scholarly journals Cone-based electrical resistivity tomography

Geophysics ◽  
2006 ◽  
Vol 71 (4) ◽  
pp. G157-G167 ◽  
Author(s):  
Adam Pidlisecky ◽  
Rosemary Knight ◽  
Eldad Haber

Determining the 3D spatial distribution of subsurface properties is a challenging, but critical, part of managing the cleanup of contaminated sites. We have developed a minimally invasive technology that can provide information about the 3D distribution of electrical conductivity. The technique, cone-based electrical resistivity tomography (C-bert), integrates resistivity tomography with cone-penetration testing. Permanent current electrodes are emplaced in the subsurface and used to inject current into the subsurface region of interest. The resultant potential fields are measured using a surface reference electrode and an electrode mounted on a cone penetrometer. The standard suite of cone penetration measurements, including high-resolution resistivity logs, are also obtained and are an integral part of the C-bert method. C-bert data are inverted using an inexact Gauss-Newton algorithm to produce a 3D electrical conductivity map. A majorchallenge with the inversion is the large local perturbation around the measurement location, due to the highly conductive cone. As the cone is small with respect to the total model space, explicit modeling of the cone is cost prohibitive. We have developed a rapid method for solving the forward model which uses iteratively determined boundary conditions (IDBC). This allows us to generate a computationally feasible, preinversion correction for the cone perturbation. We assessed C-bert by performing a field test to image the conductivity structure of the Kidd 2 site near Vancouver, British Columbia. A total of nine permanent current electrodes were emplaced and five C-bert data sets were obtained, resulting in 6516 data points. These data were inverted to obtain a 3D conductivity image of the subsurface. Furthermore, we demonstrated, using a synthetic experiment, that C-bert can yield high quality electrical conductivity images in challenging field situations. We conclude that C-bert is a promising new imaging technique.

2019 ◽  
Author(s):  
Andrea Palacios ◽  
Juan José Ledo ◽  
Niklas Linde ◽  
Linda Luquot ◽  
Fabian Bellmunt ◽  
...  

Abstract. Surface electrical resistivity tomography (ERT) is a widely used tool to study seawater intrusion (SWI). It is noninvasive and offers a high spatial coverage at a low cost, but it is strongly affected by decreasing resolution with depth. We conjecture that the use of CHERT (cross-hole ERT) can partly overcome these resolution limitations since the electrodes are placed at depth, which implies that the model resolution does not decrease in the zone of interest. The objective of this study is to evaluate the CHERT for imaging the SWI and monitoring its dynamics at the Argentona site, a well-instrumented field site of a coastal alluvial aquifer located 40 km NE of Barcelona. To do so, we installed permanent electrodes around boreholes attached to the PVC pipes to perform time-lapse monitoring of the SWI on a transect perpendicular to the coastline. After two years of monitoring, we observe variability of SWI at different time scales: (1) natural seasonal variations and aquifer salinization that we attribute to long-term drought and (2) short-term fluctuations due to sea storms or flooding in the nearby stream during heavy rain events. The spatial imaging of bulk electrical conductivity allows us to explain non-trivial salinity profiles in open boreholes (step-wise profiles really reflect the presence of fresh water at depth). By comparing CHERT results with traditional in situ measurements such as electrical conductivity of water samples and bulk electrical conductivity from induction logs, we conclude that CHERT is a reliable and cost-effective imaging tool for monitoring SWI dynamics.


2020 ◽  
Vol 24 (4) ◽  
pp. 2121-2139 ◽  
Author(s):  
Andrea Palacios ◽  
Juan José Ledo ◽  
Niklas Linde ◽  
Linda Luquot ◽  
Fabian Bellmunt ◽  
...  

Abstract. Surface electrical resistivity tomography (ERT) is a widely used tool to study seawater intrusion (SWI). It is noninvasive and offers a high spatial coverage at a low cost, but its imaging capabilities are strongly affected by decreasing resolution with depth. We conjecture that the use of CHERT (cross-hole ERT) can partly overcome these resolution limitations since the electrodes are placed at depth, which implies that the model resolution does not decrease at the depths of interest. The objective of this study is to test the CHERT for imaging the SWI and monitoring its dynamics at the Argentona site, a well-instrumented field site of a coastal alluvial aquifer located 40 km NE of Barcelona. To do so, we installed permanent electrodes around boreholes attached to the PVC pipes to perform time-lapse monitoring of the SWI on a transect perpendicular to the coastline. After 2 years of monitoring, we observe variability of SWI at different timescales: (1) natural seasonal variations and aquifer salinization that we attribute to long-term drought and (2) short-term fluctuations due to sea storms or flooding in the nearby stream during heavy rain events. The spatial imaging of bulk electrical conductivity allows us to explain non-monotonic salinity profiles in open boreholes (step-wise profiles really reflect the presence of freshwater at depth). By comparing CHERT results with traditional in situ measurements such as electrical conductivity of water samples and bulk electrical conductivity from induction logs, we conclude that CHERT is a reliable and cost-effective imaging tool for monitoring SWI dynamics.


2000 ◽  
Vol 22 ◽  
Author(s):  
Dipak Raj Pant

Aspects related to the development of a technique called electrical resistance tomography for producing two- or three­ dimensional subsurface images of an aquifer have been discussed. The technique is based on the automated measurement and computerised analysis of electrical resistivity changes caused by natural or man-made processes. A subsurface region of the aquifer to be studied is sampled by transmitting electrical energy through it along many paths of known orientations, and the apparent resistivity data derived are used to construct a cross-section al image of the region of interest. The physical model experiments and field experiments show that the presented method is effective and flexible for crosshole resistivity imaging of aquifer with bipole-bipole electrode configurations.


2004 ◽  
Vol 8 (1) ◽  
pp. 8-22 ◽  
Author(s):  
V. Naudet ◽  
A. Revil ◽  
E. Rizzo ◽  
J.-Y. Bottero ◽  
P. Bégassat

Abstract. Accurate mapping of the electrical conductivity and of the redox potential of the groundwater is important in delineating the shape of a contaminant plume. A map of redox potential in an aquifer is indicative of biodegradation of organic matter and of concentrations of redox-active components; a map of electrical conductivity provides information on the mineralisation of the groundwater. Both maps can be used to optimise the position of pumping wells for remediation. The self-potential method (SP) and electrical resistivity tomography (ERT) have been applied to the contaminant plume associated with the Entressen landfill in south-east France. The self-potential depends on groundwater flow (electrokinetic contribution) and redox conditions ("electro-redox" contribution). Using the variation of the piezometric head in the aquifer, the electrokinetic contribution is removed from the SP signals. A good linear correlation (R2=0.85) is obtained between the residual SP data and the redox potential values measured in monitoring wells. This relationship is used to draw a redox potential map of the overall contaminated site. The electrical conductivity of the subsoil is obtained from 3D-ERT analysis. A good linear correlation (R2=0.91) is observed between the electrical conductivity of the aquifer determined from the 3D-ERT image and the conductivity of the groundwater measured in boreholes. This indicates that the formation factor is nearly homogeneous in the shallow aquifer at the scale of the ERT. From this correlation, a map of the pore water conductivity of the aquifer is obtained. Keywords: self-potential, redox potential, electrical resistivity tomography, fluid conductivity, contaminant plume


Author(s):  
Mattia Aleardi ◽  
Alessandro Vinciguerra ◽  
Azadeh Hojat

AbstractInversion of electrical resistivity tomography (ERT) data is an ill-posed problem that is usually solved through deterministic gradient-based methods. These methods guarantee a fast convergence but hinder accurate assessments of model uncertainties. On the contrary, Markov Chain Monte Carlo (MCMC) algorithms can be employed for accurate uncertainty appraisals, but they remain a formidable computational task due to the many forward model evaluations needed to converge. We present an alternative approach to ERT that not only provides a best-fitting resistivity model but also gives an estimate of the uncertainties affecting the inverse solution. More specifically, the implemented method aims to provide multiple realizations of the resistivity values in the subsurface by iteratively updating an initial ensemble of models based on the difference between the predicted and measured apparent resistivity pseudosections. The initial ensemble is generated using a geostatistical method under the assumption of log-Gaussian distributed resistivity values and a Gaussian variogram model. A finite-element code constitutes the forward operator that maps the resistivity values onto the associated apparent resistivity pseudosection. The optimization procedure is driven by the ensemble smoother with multiple data assimilation, an iterative ensemble-based algorithm that performs a Bayesian updating step at each iteration. The main advantages of the proposed approach are that it can be applied to nonlinear inverse problems, while also providing an ensemble of models from which the uncertainty on the recovered solution can be inferred. The ill-conditioning of the inversion procedure is decreased through a discrete cosine transform reparameterization of both data and model spaces. The implemented method is first validated on synthetic data and then applied to field data. We also compare the proposed method with a deterministic least-square inversion, and with an MCMC algorithm. We show that the ensemble-based inversion estimates resistivity models and associated uncertainties comparable to those yielded by a much more computationally intensive MCMC sampling.


Geophysics ◽  
2007 ◽  
Vol 72 (4) ◽  
pp. F167-F175 ◽  
Author(s):  
Greg A. Oldenborger ◽  
Partha S. Routh ◽  
Michael D. Knoll

Solution appraisal is difficult for large 3D, nonlinear inverse problems such as electrical resistivity tomography (ERT). We construct the volume of investigation index (VOI) as the sensitivity of the inversion result to a variable-reference model. This limited exploration of the model space provides an efficient and pragmatic method of appraisal for a particular data set and a 3D model domain. We present a synthetic example to demonstrate the applicability of the VOI as a tool for characterizing model reliability for 3D ERT and as a method of survey design. We show how the VOI provides a measure of model resolution and how insight gained from VOI analysis cannot be gained through similar examination of the average sensitivity distributions. In the context of ERT monitoring of an injection/withdrawal experiment, we utilize the VOI for judging the degree of reliability of hydrogeological interpretations that stem from features observed in the estimated electrical-conductivity models. We employ the VOI for the experimental data as a comparative measure of survey performance. For this experiment, the VOI shows that a larger, more artifact-free region of reliability is achieved using a circulating vertical dipole-dipole survey geometry, as opposed to a horizontal dipole-dipole survey geometry. The experimental VOI distributions exhibit dependence on the borehole infrastructure and the actual earth model.


2020 ◽  
Vol 195 ◽  
pp. 03015 ◽  
Author(s):  
Guido Musso ◽  
Antonio Zibisco ◽  
Renato Maria Cosentini ◽  
Paolo Trischitta ◽  
Gabriele Della Vecchia

Cement bentonite slurry cutoff walls are used to encapsulate pollutants within contaminated areas, so avoiding their spreading in the environment. In both temperate and arid climates, at shallow depths, slurry walls are exposed to interaction with the atmosphere and thus to relative humidity values which might induce desaturation and significant shrinkage. This note presents the main results of a study aimed at investigating the impact of drying processes on the integrity and the hydraulic performance of cement bentonite slurry walls. Cement bentonite samples were cured under water for different times (1 months, 2 months and 4 months) and then dried naturally by exposing them to the laboratory environment (T = 21 °C, relative humidity approximately 38%). Once dried, the bottom of the samples was placed in contact with a thin layer of water to induce wetting. The distribution of the electrical conductivity within these samples was evaluated through Electrical Resistivity Tomography measurements, and electrical conductivity maps were converted then into maps of water contents on basis of a phenomenological relationship. The reconstructed water contents compared very well to the measured ones. Drying induced a limited cracking of the samples, which might affect to some extent the hydraulic performance of the barriers.


Sign in / Sign up

Export Citation Format

Share Document