Interpretation of AVO anomalies

Geophysics ◽  
2010 ◽  
Vol 75 (5) ◽  
pp. 75A3-75A13 ◽  
Author(s):  
Douglas J. Foster ◽  
Robert G. Keys ◽  
F. David Lane

We investigate the effects of changes in rock and fluid properties on amplitude-variation-with-offset (AVO) responses. In the slope-intercept domain, reflections from wet sands and shales fall on or near a trend that we call the fluid line. Reflections from the top of sands containing gas or light hydrocarbons fall on a trend approximately parallel to the fluid line; reflections from the base of gas sands fall on a parallel trend on the opposing side of the fluid line. The polarity standard of the seismic data dictates whether these reflections from the top of hydrocarbon-bearing sands are below or above the fluid line. Typically, rock properties of sands and shales differ, and therefore reflections from sand/shale interfaces are also displaced from the fluid line. The distance of these trends from the fluid line depends upon the contrast of the ratio of P-wave velocity [Formula: see text] and S-wave velocity [Formula: see text]. This ratio is a function of pore-fluid compressibility and implies that distance from the fluid line increases with increasing compressibility. Reflections from wet sands are closer to the fluid line than hydrocarbon-related reflections. Porosity changes affect acoustic impedance but do not significantly impact the [Formula: see text] contrast. As a result, porosity changes move the AVO response along trends approximately parallel to the fluid line. These observations are useful for interpreting AVO anomalies in terms of fluids, lithology, and porosity.

2021 ◽  
Author(s):  
Sheng Chen ◽  
Qingcai Zeng ◽  
Xiujiao Wang ◽  
Qing Yang ◽  
Chunmeng Dai ◽  
...  

Abstract Practices of marine shale gas exploration and development in south China have proved that formation overpressure is the main controlling factor of shale gas enrichment and an indicator of good preservation condition. Accurate prediction of formation pressure before drilling is necessary for drilling safety and important for sweet spots predicting and horizontal wells deploying. However, the existing prediction methods of formation pore pressures all have defects, the prediction accuracy unsatisfactory for shale gas development. By means of rock mechanics analysis and related formulas, we derived a formula for calculating formation pore pressures. Through regional rock physical analysis, we determined and optimized the relevant parameters in the formula, and established a new formation pressure prediction model considering P-wave velocity, S-wave velocity and density. Based on regional exploration wells and 3D seismic data, we carried out pre-stack seismic inversion to obtain high-precision P-wave velocity, S-wave velocity and density data volumes. We utilized the new formation pressure prediction model to predict the pressure and the spatial distribution of overpressure sweet spots. Then, we applied the measured pressure data of three new wells to verify the predicted formation pressure by seismic data. The result shows that the new method has a higher accuracy. This method is qualified for safe drilling and prediction of overpressure sweet spots for shale gas development, so it is worthy of promotion.


2019 ◽  
Vol 38 (10) ◽  
pp. 762-769
Author(s):  
Patrick Connolly

Reflectivities of elastic properties can be expressed as a sum of the reflectivities of P-wave velocity, S-wave velocity, and density, as can the amplitude-variation-with-offset (AVO) parameters, intercept, gradient, and curvature. This common format allows elastic property reflectivities to be expressed as a sum of AVO parameters. Most AVO studies are conducted using a two-term approximation, so it is helpful to reduce the three-term expressions for elastic reflectivities to two by assuming a relationship between P-wave velocity and density. Reduced to two AVO components, elastic property reflectivities can be represented as vectors on intercept-gradient crossplots. Normalizing the lengths of the vectors allows them to serve as basis vectors such that the position of any point in intercept-gradient space can be inferred directly from changes in elastic properties. This provides a direct link between properties commonly used in rock physics and attributes that can be measured from seismic data. The theory is best exploited by constructing new seismic data sets from combinations of intercept and gradient data at various projection angles. Elastic property reflectivity theory can be transferred to the impedance domain to aid in the analysis of well data to help inform the choice of projection angles. Because of the effects of gradient measurement errors, seismic projection angles are unlikely to be the same as theoretical angles or angles derived from well-log analysis, so seismic data will need to be scanned through a range of angles to find the optimum.


Geophysics ◽  
2020 ◽  
Vol 85 (6) ◽  
pp. U139-U149
Author(s):  
Hongwei Liu ◽  
Mustafa Naser Al-Ali ◽  
Yi Luo

Seismic images can be viewed as photographs for underground rocks. These images can be generated from different reflections of elastic waves with different rock properties. Although the dominant seismic data processing is still based on the acoustic wave assumption, elastic wave processing and imaging have become increasingly popular in recent years. A major challenge in elastic wave processing is shear-wave (S-wave) velocity model building. For this reason, we have developed a sequence of procedures for estimating seismic S-wave velocities and the subsequent generation of seismic images using converted waves. We have two main essential new supporting techniques. The first technique is the decoupling of the S-wave information by generating common-focus-point gathers via application of the compressional-wave (P-wave) velocity on the converted seismic data. The second technique is to assume one common VP/ VS ratio to approximate two types of ratios, namely, the ratio of the average earth layer velocity and the ratio of the stacking velocity. The benefit is that we reduce two unknown ratios into one, so it can be easily scanned and picked in practice. The PS-wave images produced by this technology could be aligned with the PP-wave images such that both can be produced in the same coordinate system. The registration between the PP and PS images provides cross-validation of the migrated structures and a better estimation of underground rock and fluid properties. The S-wave velocity, computed from the picked optimal ratio, can be used not only for generating the PS-wave images, but also to ensure well registration between the converted-wave and P-wave images.


Geophysics ◽  
2007 ◽  
Vol 72 (1) ◽  
pp. B1-B7 ◽  
Author(s):  
Abdullatif A. Al-Shuhail

Vertical aligned fractures can significantly enhance the horizontal permeability of a tight reservoir. Therefore, it is important to know the fracture porosity and direction in order to develop the reservoir efficiently. P-wave AVOA (amplitude variation with offset and azimuth) can be used to determine these fracture parameters. In this study, I present a method for inverting the fracture porosity from 2D P-wave seismic data. The method is based on a modeling result that shows that the anisotropic AVO (amplitude variation with offset) gradient is negative and linearly dependent on the fracture porosity in a gas-saturated reservoir, whereas the gradient is positive and linearly dependent on the fracture porosity in a liquid-saturated reservoir. This assumption is accurate as long as the crack aspect ratio is less than 0.1 and the ratio of the P-wave velocity to the S-wave velocity is greater than 1.8 — two conditions that are satisfied in most naturally fractured reservoirs. The inversion then uses the fracture strike, the crack aspect ratio, and the ratio of the P-wave velocity to the S-wave velocity to invert the fracture porosity from the anisotropic AVO gradient after inferring the fluid type from the sign of the anisotropic AVO gradient. When I applied this method to a seismic line from the oil-saturated zone of the fractured Austin Chalk of southeast Texas, I found that the inversion gave a median fracture porosity of 0.21%, which is within the fracture-porosity range commonly measured in cores from the Austin Chalk.


Geophysics ◽  
1998 ◽  
Vol 63 (5) ◽  
pp. 1659-1669 ◽  
Author(s):  
Christine Ecker ◽  
Jack Dvorkin ◽  
Amos Nur

We interpret amplitude variation with offset (AVO) data from a bottom simulating reflector (BSR) offshore Florida by using rock‐physics‐based synthetic seismic models. A previously conducted velocity and AVO analysis of the in‐situ seismic data showed that the BSR separates hydrate‐bearing sediments from sediments containing free methane. The amplitude at the BSR are increasingly negative with increasing offset. This behavior was explained by P-wave velocity above the BSR being larger than that below the BSR, and S-wave velocity above the BSR being smaller than that below the BSR. We use these AVO and velocity results to infer the internal structure of the hydrated sediment. To do so, we examine two micromechanical models that correspond to the two extreme cases of hydrate deposition in the pore space: (1) the hydrate cements grain contacts and strongly reinforces the sediment, and (2) the hydrate is located away from grain contacts and does not affect the stiffness of the sediment frame. Only the second model can qualitatively reproduce the observed AVO response. Thus inferred internal structure of the hydrate‐bearing sediment means that (1) the sediment above the BSR is uncemented and, thereby, mechanically weak, and (2) its permeability is very low because the hydrate clogs large pore‐space conduits. The latter explains why free gas is trapped underneath the BSR. The seismic data also indicate the absence of strong reflections at the top of the hydrate layer. This fact suggests that the high concentration of hydrates in the sediment just above the BSR gradually decreases with decreasing depth. This effect is consistent with the fact that the low‐permeability hydrated sediments above the BSR prevent free methane from migrating upwards.


Geophysics ◽  
1999 ◽  
Vol 64 (2) ◽  
pp. 504-507 ◽  
Author(s):  
Franklyn K. Levin

Tessmer and Behle (1988) show that S-wave velocity can be estimated from surface seismic data if both normal P-wave data and converted‐wave data (P-SV) are available. The relation of Tessmer and Behle is [Formula: see text] (1) where [Formula: see text] is the S-wave velocity, [Formula: see text] is the P-wave velocity, and [Formula: see text] is the converted‐wave velocity. The growing body of converted‐wave data suggest a brief examination of the validity of equation (1) for velocities that vary with depth.


Author(s):  
Stian Rørheim ◽  
Andreas Bauer ◽  
Rune M Holt

Summary The impact of temperature on elastic rock properties is less-studied and thus less-understood than that of pressure and stress. Thermal effects on dispersion are experimentally observed herein from seismic to ultrasonic frequencies: Young’s moduli and Poisson’s ratios plus P- and S-wave velocities are determined by forced-oscillation (FO) from 1 to 144 Hz and by pulse-transmission (PT) at 500 kHz. Despite being the dominant sedimentary rock type, shales receive less experimental attention than sandstones and carbonates. To our knowledge, no other FO studies on shale at above ambient temperatures exist. Temperature fluctuations are enforced by two temperature cycles from 20 via 40 to 60○C and vice versa. Measured rock properties are initially irreversible but become reversible with increasing number of heating and cooling segments. Rock property-sensitivity to temperature is likewise reduced. It is revealed that dispersion shifts towards higher frequencies with increasing temperature (reversible if decreased), Young’s moduli and P-wave velocity moduli and P-wave velocity maxima occur at 40○C for frequencies below 56 Hz, and S-wave velocities remain unchanged with temperature (if the first heating segment is neglected) at seismic frequencies. In comparison, ultrasonic P- and S-wave velocities are found to decrease with increasing temperatures. Behavioural differences between seismic and ultrasonic properties are attributed to decreasing fluid viscosity with temperature. We hypothesize that our ultrasonic recordings coincide with the transition-phase separating the low- and high-frequency regimes while our seismic recordings are within the low-frequency regime.


Geophysics ◽  
1996 ◽  
Vol 61 (4) ◽  
pp. 1137-1149 ◽  
Author(s):  
James E. Gaiser

An important step in the simultaneous interpretation or inversion of multicomponent data sets is to quantitatively estimate the ratio of P‐wave velocity to S‐wave velocity [Formula: see text]. In this endeavor, I have developed correlation techniques to determine long‐wavelength components of [Formula: see text] that can lead to more accurate measurements of rock properties and processing parameters. P‐wave reflections are correlated with converted P‐ to S‐wave reflections (or S‐wave reflections) from the same location to determine which events are related to the same subsurface impedance contrasts. Shear waves are transformed (compressed) to P‐wave time via average [Formula: see text] conjugate operators before correlation. Aided by conventional P‐wave velocity information and petrophysical relationships, this technique provides optimal [Formula: see text] estimates in a similar manner that semblance analyses provide stacking velocities. These estimates can be used to transform the entire S‐wave trace to P‐wave time for short‐wavelength amplitude inversion. Also, a target‐oriented correlation analysis quantitatively determines interval [Formula: see text] at a specific horizon or group of horizons. Data from vertical seismic profile (VSP) stacked traces are used to evaluate these techniques. Long‐wavelength average and interval [Formula: see text] estimates obtained from the correlation analyses agree closely with [Formula: see text] results determined from VSP direct‐arrival traveltimes.


2021 ◽  
Vol 40 (3) ◽  
pp. 178-185
Author(s):  
Yangjun (Kevin) Liu ◽  
Jonathan Hernandez Casado ◽  
Mohamed El-Toukhy ◽  
Shenghong Tai

Rock properties in the subsurface are of major importance for evaluating the petroleum prospectivity of a sedimentary basin. The key rock properties to understand are porosity, density, temperature, effective stress, and pore pressure. These rock properties can be obtained or calculated when borehole data are available. However, borehole data are usually sparse, especially in frontier basins. We propose some simple rock-physics transforms for converting P-wave velocity to other rock properties. We found that these rock-physics transforms are predictive in the east and west sides of Campeche Basin. The proposed rock-physics transforms can be used to obtain laterally varying rock properties based on information derived from seismic data.


Sign in / Sign up

Export Citation Format

Share Document