Basin-wide empirical rock-physics transform and its application in Campeche Basin

2021 ◽  
Vol 40 (3) ◽  
pp. 178-185
Author(s):  
Yangjun (Kevin) Liu ◽  
Jonathan Hernandez Casado ◽  
Mohamed El-Toukhy ◽  
Shenghong Tai

Rock properties in the subsurface are of major importance for evaluating the petroleum prospectivity of a sedimentary basin. The key rock properties to understand are porosity, density, temperature, effective stress, and pore pressure. These rock properties can be obtained or calculated when borehole data are available. However, borehole data are usually sparse, especially in frontier basins. We propose some simple rock-physics transforms for converting P-wave velocity to other rock properties. We found that these rock-physics transforms are predictive in the east and west sides of Campeche Basin. The proposed rock-physics transforms can be used to obtain laterally varying rock properties based on information derived from seismic data.

2019 ◽  
Vol 38 (10) ◽  
pp. 762-769
Author(s):  
Patrick Connolly

Reflectivities of elastic properties can be expressed as a sum of the reflectivities of P-wave velocity, S-wave velocity, and density, as can the amplitude-variation-with-offset (AVO) parameters, intercept, gradient, and curvature. This common format allows elastic property reflectivities to be expressed as a sum of AVO parameters. Most AVO studies are conducted using a two-term approximation, so it is helpful to reduce the three-term expressions for elastic reflectivities to two by assuming a relationship between P-wave velocity and density. Reduced to two AVO components, elastic property reflectivities can be represented as vectors on intercept-gradient crossplots. Normalizing the lengths of the vectors allows them to serve as basis vectors such that the position of any point in intercept-gradient space can be inferred directly from changes in elastic properties. This provides a direct link between properties commonly used in rock physics and attributes that can be measured from seismic data. The theory is best exploited by constructing new seismic data sets from combinations of intercept and gradient data at various projection angles. Elastic property reflectivity theory can be transferred to the impedance domain to aid in the analysis of well data to help inform the choice of projection angles. Because of the effects of gradient measurement errors, seismic projection angles are unlikely to be the same as theoretical angles or angles derived from well-log analysis, so seismic data will need to be scanned through a range of angles to find the optimum.


1999 ◽  
Vol 2 (01) ◽  
pp. 69-75 ◽  
Author(s):  
Abbas Khaksar ◽  
C.M. Griffiths

Summary Experimental studies indicate that when effective stress increases, compressional wave velocity in porous rocks increases. Reservoir pressure reduction, resulting from hydrocarbon production, increases effective stress. For a rock with a given porosity the sonic log may show decreasing values as the pressure in the reservoir decreases. This in turn may lead to underestimation of the actual porosity of the reservoir rocks in low pressure reservoirs. The range of such underestimation for liquid saturated reservoirs may not be significant, but since the influence of effective stress on velocity increases as fluid saturation changes to gas, porosity underestimation by conventional velocity-porosity transforms for gas bearing rocks may increase. Examples are taken from partially depleted gas reservoirs in the Cooper basin, South Australia. The stress dependent nature of velocity requires that the in situ pressure condition should be considered when the sonic log is used to determine the porosity of gas producing reservoir rocks. Introduction Knowledge of the elastic velocities in porous media is of considerable interest in many research fields including rock mechanics, geological engineering, geophysics, and petroleum exploration. In petroleum exploration this concept mainly concerns the relationship between reservoir rock characters and the acoustic velocity. Porosity estimation is one of the most common applications of acoustic velocity data in hydrocarbon wells. There are numerous empirical equations to convert sonic travel time (ts) to porosity. It is well known that the P-wave velocity (vp), for a rock with a given porosity, is also controlled by several other factors such as pore filling minerals, internal and external pressures, pore geometry, and pore fluid saturation, etc.1 These factors may have significant effect on measured ts and thus on porosity interpretation from the sonic log. Several investigators (see Refs. 2-4) have studied the effect of clay content and the type and saturation of pore fluids on acoustic velocity and the sonic log derived porosity in reservoir rocks. In contrast, the in situ pressure condition has rarely been considered as a parameter in the commonly used velocity-porosity equations. This paper addresses the influence of effective stress on the elastic wave velocities in rocks and its implications on porosity determination from the sonic log in hydrocarbon bearing reservoirs. Examples from the literature and a case study in a gas-producing reservoir are used to highlight the importance of the issue. Effective stress is the arithmetic difference between lithostatic pressure and hydrostatic pressure at a given depth. It may normally be considered equivalent to the difference between confining pressure (pc) and pore pressure (pp).5 Experimental studies indicate that as effective stress increases, vp increases.6 This increase depends on the rock type and pore fluid. The change in vp due to effective stress increase is more pronounced when the pore fluid is gas.7 Current sonic porosity methods do not account for the variation of vp due to pressure change in hydrocarbon producing fields. Effective Stress Versus Velocity Wyllie et al.6 measured ultrasonic P-wave velocity as a function of effective stress in water saturated Berea sandstone. They showed that at constant confining pressures vp increases with decreasing pore pressure, and for constant effective stress, the vp remains constant. Similar relationships between effective stress and P-wave velocity have also been reported by other researchers.7–10 King,9 and Nur and Simmons7 reported a more pronounced stress effect on vp when air replaces water. Experimental results indicate that confining and pore pressures have almost equal but opposite effects on vp. Confining pressure influences the wave velocities because pressure deforms most of the compliant parts of the pore space, such as microcracks and loose grain contacts. Closure of microcracks increases the stiffness of the rock and increases bulk and shear moduli. Increases in pore pressure mechanically oppose the closing of cracks and grain contacts, resulting in low effective moduli and velocities. Hence, when both confining and pore pressures vary, only the difference between the two pressures has a significant influence on velocity8 that is Δ p = p c − p p , ( 1 ) where ?p is differential pressure. The more accurate relationship may be of the form of p e = p c − σ p p , ( 2 ) where pe is effective stress and ? is the effective pressure coefficient. The value of ? varies around unity for different rocks and is a function of pc11 Eq. 2 indicates that for ? values not equal to unity, changes in a physical property caused by changes in confining pressure may not be exactly canceled by equivalent changes in pore pressure. Experimentally derived ? values for the water saturated Berea sandstone by Christensen and Wang10 show values less than 1 for properties that involve significant bulk compression (vp), whereas a pore pressure increment does more than cancel an equivalent change in confining pressure for properties that significantly depend on rigidity (vs).


Geophysics ◽  
2010 ◽  
Vol 75 (5) ◽  
pp. 75A3-75A13 ◽  
Author(s):  
Douglas J. Foster ◽  
Robert G. Keys ◽  
F. David Lane

We investigate the effects of changes in rock and fluid properties on amplitude-variation-with-offset (AVO) responses. In the slope-intercept domain, reflections from wet sands and shales fall on or near a trend that we call the fluid line. Reflections from the top of sands containing gas or light hydrocarbons fall on a trend approximately parallel to the fluid line; reflections from the base of gas sands fall on a parallel trend on the opposing side of the fluid line. The polarity standard of the seismic data dictates whether these reflections from the top of hydrocarbon-bearing sands are below or above the fluid line. Typically, rock properties of sands and shales differ, and therefore reflections from sand/shale interfaces are also displaced from the fluid line. The distance of these trends from the fluid line depends upon the contrast of the ratio of P-wave velocity [Formula: see text] and S-wave velocity [Formula: see text]. This ratio is a function of pore-fluid compressibility and implies that distance from the fluid line increases with increasing compressibility. Reflections from wet sands are closer to the fluid line than hydrocarbon-related reflections. Porosity changes affect acoustic impedance but do not significantly impact the [Formula: see text] contrast. As a result, porosity changes move the AVO response along trends approximately parallel to the fluid line. These observations are useful for interpreting AVO anomalies in terms of fluids, lithology, and porosity.


2022 ◽  
Vol 41 (1) ◽  
pp. 40-46
Author(s):  
Öz Yilmaz ◽  
Kai Gao ◽  
Milos Delic ◽  
Jianghai Xia ◽  
Lianjie Huang ◽  
...  

We evaluate the performance of traveltime tomography and full-wave inversion (FWI) for near-surface modeling using the data from a shallow seismic field experiment. Eight boreholes up to 20-m depth have been drilled along the seismic line traverse to verify the accuracy of the P-wave velocity-depth model estimated by seismic inversion. The velocity-depth model of the soil column estimated by traveltime tomography is in good agreement with the borehole data. We used the traveltime tomography model as an initial model and performed FWI. Full-wave acoustic and elastic inversions, however, have failed to converge to a velocity-depth model that desirably should be a high-resolution version of the model estimated by traveltime tomography. Moreover, there are significant discrepancies between the estimated models and the borehole data. It is understandable why full-wave acoustic inversion would fail — land seismic data inherently are elastic wavefields. The question is: Why does full-wave elastic inversion also fail? The strategy to prevent full-wave elastic inversion of vertical-component geophone data trapped in a local minimum that results in a physically implausible near-surface model may be cascaded inversion. Specifically, we perform traveltime tomography to estimate a P-wave velocity-depth model for the near-surface and Rayleigh-wave inversion to estimate an S-wave velocity-depth model for the near-surface, then use the resulting pairs of models as the initial models for the subsequent full-wave elastic inversion. Nonetheless, as demonstrated by the field data example here, the elastic-wave inversion yields a near-surface solution that still is not in agreement with the borehole data. Here, we investigate the limitations of FWI applied to land seismic data for near-surface modeling.


2021 ◽  
Author(s):  
Sheng Chen ◽  
Qingcai Zeng ◽  
Xiujiao Wang ◽  
Qing Yang ◽  
Chunmeng Dai ◽  
...  

Abstract Practices of marine shale gas exploration and development in south China have proved that formation overpressure is the main controlling factor of shale gas enrichment and an indicator of good preservation condition. Accurate prediction of formation pressure before drilling is necessary for drilling safety and important for sweet spots predicting and horizontal wells deploying. However, the existing prediction methods of formation pore pressures all have defects, the prediction accuracy unsatisfactory for shale gas development. By means of rock mechanics analysis and related formulas, we derived a formula for calculating formation pore pressures. Through regional rock physical analysis, we determined and optimized the relevant parameters in the formula, and established a new formation pressure prediction model considering P-wave velocity, S-wave velocity and density. Based on regional exploration wells and 3D seismic data, we carried out pre-stack seismic inversion to obtain high-precision P-wave velocity, S-wave velocity and density data volumes. We utilized the new formation pressure prediction model to predict the pressure and the spatial distribution of overpressure sweet spots. Then, we applied the measured pressure data of three new wells to verify the predicted formation pressure by seismic data. The result shows that the new method has a higher accuracy. This method is qualified for safe drilling and prediction of overpressure sweet spots for shale gas development, so it is worthy of promotion.


Geophysics ◽  
2019 ◽  
Vol 84 (2) ◽  
pp. R271-R293 ◽  
Author(s):  
Nuno V. da Silva ◽  
Gang Yao ◽  
Michael Warner

Full-waveform inversion deals with estimating physical properties of the earth’s subsurface by matching simulated to recorded seismic data. Intrinsic attenuation in the medium leads to the dispersion of propagating waves and the absorption of energy — media with this type of rheology are not perfectly elastic. Accounting for that effect is necessary to simulate wave propagation in realistic geologic media, leading to the need to estimate intrinsic attenuation from the seismic data. That increases the complexity of the constitutive laws leading to additional issues related to the ill-posed nature of the inverse problem. In particular, the joint estimation of several physical properties increases the null space of the parameter space, leading to a larger domain of ambiguity and increasing the number of different models that can equally well explain the data. We have evaluated a method for the joint inversion of velocity and intrinsic attenuation using semiglobal inversion; this combines quantum particle-swarm optimization for the estimation of the intrinsic attenuation with nested gradient-descent iterations for the estimation of the P-wave velocity. This approach takes advantage of the fact that some physical properties, and in particular the intrinsic attenuation, can be represented using a reduced basis, substantially decreasing the dimension of the search space. We determine the feasibility of the method and its robustness to ambiguity with 2D synthetic examples. The 3D inversion of a field data set for a geologic medium with transversely isotropic anisotropy in velocity indicates the feasibility of the method for inverting large-scale real seismic data and improving the data fitting. The principal benefits of the semiglobal multiparameter inversion are the recovery of the intrinsic attenuation from the data and the recovery of the true undispersed infinite-frequency P-wave velocity, while mitigating ambiguity between the estimated parameters.


2020 ◽  
Author(s):  
Hyunggu Jun ◽  
Hyeong-Tae Jou ◽  
Han-Joon Kim ◽  
Sang Hoon Lee

<p>Imaging the subsurface structure through seismic data needs various information and one of the most important information is the subsurface P-wave velocity. The P-wave velocity structure mainly influences on the location of the reflectors during the subsurface imaging, thus many algorithms has been developed to invert the accurate P-wave velocity such as conventional velocity analysis, traveltime tomography, migration velocity analysis (MVA) and full waveform inversion (FWI). Among those methods, conventional velocity analysis and MVA can be widely applied to the seismic data but generate the velocity with low resolution. On the other hands, the traveltime tomography and FWI can invert relatively accurate velocity structure, but they essentially need long offset seismic data containing sufficiently low frequency components. Recently, the stochastic method such as Markov chain Monte Carlo (McMC) inversion was applied to invert the accurate P-wave velocity with the seismic data without long offset or low frequency components. This method uses global optimization instead of local optimization and poststack seismic data instead of prestack seismic data. Therefore, it can avoid the problem of the local minima and limitation of the offset. However, the accuracy of the poststack seismic section directly affects the McMC inversion result. In this study, we tried to overcome the dependency of the McMC inversion on the poststack seismic section and iterative workflow was applied to the McMC inversion to invert the accurate P-wave velocity from the simple background velocity and inaccurate poststack seismic section. The numerical test showed that the suggested method could successfully invert the subsurface P-wave velocity.</p>


Geophysics ◽  
2012 ◽  
Vol 77 (3) ◽  
pp. B125-B134 ◽  
Author(s):  
Xiujuan Wang ◽  
Myung Lee ◽  
Shiguo Wu ◽  
Shengxiong Yang

Wireline logs were acquired in eight wells during China’s first gas hydrate drilling expedition (GMGS-1) in April–June of 2007. Well logs obtained from site SH3 indicated gas hydrate was present in the depth range of 195–206 m below seafloor with a maximum pore-space gas hydrate saturation, calculated from pore water freshening, of about 26%. Assuming gas hydrate is uniformly distributed in the sediments, resistivity calculations using Archie’s equation yielded hydrate-saturation trends similar to those from chloride concentrations. However, the measured compressional (P-wave) velocities decreased sharply at the depth between 194 and 199 mbsf, dropping as low as [Formula: see text], indicating the presence of free gas in the pore space, possibly caused by the dissociation of gas hydrate during drilling. Because surface seismic data acquired prior to drilling were not influenced by the in situ gas hydrate dissociation, surface seismic data could be used to identify the cause of the low P-wave velocity observed in the well log. To determine whether the low well-log P-wave velocity was caused by in situ free gas or by gas hydrate dissociation, synthetic seismograms were generated using the measured well-log P-wave velocity along with velocities calculated assuming both gas hydrate and free gas in the pore space. Comparing the surface seismic data with various synthetic seismograms suggested that low P-wave velocities were likely caused by the dissociation of in situ gas hydrate during drilling.


2021 ◽  
Author(s):  
V Lay ◽  
S Buske ◽  
SB Bodenburg ◽  
John Townend ◽  
R Kellett ◽  
...  

No description supplied


Sign in / Sign up

Export Citation Format

Share Document