Modeling and analysis of compaction-induced traveltime shifts for multicomponent seismic data

Geophysics ◽  
2012 ◽  
Vol 77 (6) ◽  
pp. T221-T237 ◽  
Author(s):  
Steven Shawn Smith ◽  
Ilya Tsvankin

Modeling of time shifts associated with time-lapse (4D) seismic surveys is helpful in evaluating reservoir depressurization and inverting for subsurface stress. Using coupled geomechanical and full-waveform seismic modeling, we study the influence of compaction-induced stress and strain around a simplified reservoir on compressional (P), shear (S), and mode-converted (PS) waves. We estimate compaction-induced time shifts and analyze their dependence on reflector depth and pressure drop inside the reservoir. Time shifts between synthetic baseline and monitor surveys are obtained by processing techniques that are potentially applicable to field data. Although P-wave time-shift lags for reflectors in the overburden are indicative of induced anisotropy, they are two to three times smaller than S-wave time-shift leads for reflectors beneath the reservoir. We also investigate the contributions of the deviatoric and volumetric stains to the time shifts for all three modes. Time shifts for S- and PS-waves are strongly influenced by elevated volumetric and deviatoric strains inside the reservoir. Almost constant S-wave time shifts for a range of offsets and source locations indicate that the contribution of stress-induced velocity anisotropy to shear-wave signatures is weak because the symmetry is close to elliptical. Our modeling also shows that mild tilt of a rectangular reservoir, or its replacement with an elliptically shaped reservoir of the same aspect ratio, has little influence on time shifts. Potentially, the developed methodology can be applied to estimate compaction-induced stress fields using simple compartmentalized reservoir models.

2010 ◽  
Vol 13 (01) ◽  
pp. 37-43 ◽  
Author(s):  
John R. Fanchi

Summary Time-lapse (4D) seismic can be effectively integrated into the reservoir-management process by embedding the calculation of seismic attributes in a flow simulator. This paper describes a petroelastic model (PEM) embedded in a multipurpose flow simulator. The flow simulator may be used to model gas, black-oil, compositional, and thermal systems. The PEM can calculate reservoir geophysical attributes such as compressional-wave (P-wave) and shear-wave (S-wave) velocities and impedances, dynamic and static Young's moduli, and dynamic and static Poisson's ratios. Examples illustrate how to use the PEM to facilitate the integration of 4D seismic and reservoir flow modeling.


Geophysics ◽  
1990 ◽  
Vol 55 (4) ◽  
pp. 470-479 ◽  
Author(s):  
D. F. Winterstein ◽  
B. N. P. Paulsson

Crosshole and vertical seismic profile (VST) data made possible accurate characterization of the elastic properties, including noticeable velocity anisotropy, of a near‐surface late Tertiary shale formation. Shear‐wave splitting was obvious in both crosshole and VSP data. In crosshole data, two orthologonally polarrized shear (S) waves arrived 19 ms in the uppermost 246 ft (75 m). Vertically traveling S waves of the VSP separated about 10 ms in the uppermost 300 ft (90 m) but remained at nearly constant separation below that level. A transversely isotropic model, which incorporates a rapid increase in S-wave velocities with depth but slow increase in P-wave velocities, closely fits the data over most of the measured interval. Elastic constants of the transvesely isotropic model show spherical P- and [Formula: see text]wave velocity surfaces but an ellipsoidal [Formula: see text]wave surface with a ratio of major to minor axes of 1.15. The magnitude of this S-wave anisotropy is consistent with and lends credence to S-wave anisotropy magnitudes deduced less directly from data of many sedimentary basins.


2020 ◽  
Author(s):  
Hanneke Paulssen ◽  
Wen Zhou

<p>Between 2013 and 2017, the Groningen gas field was monitored by several deployments of an array of geophones in a deep borehole at reservoir level (3 km). Zhou & Paulssen (2017) showed that the P- and S-velocity structure of the reservoir could be retrieved from noise interferometry by cross-correlation. Here we show that deconvolution interferometry of high-frequency train signals from a nearby railroad not only allows determination of the velocity structure with higher accuracy, but also enables time-lapse measurements. We found that the travel times within the reservoir decrease by a few tens of microseconds for two 5-month periods. The observed travel time decreases are associated to velocity increases caused by compaction of the reservoir. However, the uncertainties are relatively large. <br>Striking is the large P-wave travel time anomaly (-0.8 ms) during a distinct period of time (17 Jul - 2 Sep 2015). It is only observed for inter-geophone paths that cross the gas-water contact (GWC) of the reservoir. The anomaly started 4 days after drilling into the reservoir of a new well at 4.5 km distance and ended 4 days after the drilling operations stopped. We did not find an associated S-wave travel time anomaly. This suggests that the anomaly is caused by a temporary elevation of the GWC (water replacing gas) of approximately 20 m. We suggest that the GWC is elevated due to pore-pressure variations during drilling. The 4-day delay corresponds to a pore-pressure diffusivity of ~5m<sup>2</sup>/s, which is in good agreement with the value found from material parameters and the diffusivity of (induced) seismicity for various regions in the world. </p>


2020 ◽  
pp. 1-62 ◽  
Author(s):  
Jamal Ahmadov ◽  
Mehdi Mokhtari

Tuscaloosa Marine Shale (TMS) formation is a clay- and organic-rich emerging shale play with a considerable amount of hydrocarbon resources. Despite the substantial potential, there have been only a few wells drilled and produced in the formation over the recent years. The analyzed TMS samples contain an average of 50 wt% total clay, 27 wt% quartz and 14 wt% calcite and the mineralogy varies considerably over the small intervals. The high amount of clay leads to pronounced anisotropy and the frequent changes in mineralogy result in the heterogeneity of the formation. We studied the compressional (VP) and shear-wave (VS) velocities to evaluate the degree of anisotropy and heterogeneity, which impact hydraulic fracture growth, borehole instabilities, and subsurface imaging. The ultrasonic measurements of P- and S-wave velocities from five TMS wells are the best fit to the linear relationship with R2 = 0.84 in the least-squares criteria. We observed that TMS S-wave velocities are relatively lower when compared to the established velocity relationships. Most of the velocity data in bedding-normal direction lie outside constant VP/VS lines of 1.6–1.8, a region typical of most organic-rich shale plays. For all of the studied TMS samples, the S-wave velocity anisotropy exhibits higher values than P-wave velocity anisotropy. In the samples in which the composition is dominated by either calcite or quartz minerals, mineralogy controls the velocities and VP/VS ratios to a great extent. Additionally, the organic content and maturity account for the velocity behavior in the samples in which the mineralogical composition fails to do so. The results provide further insights into TMS Formation evaluation and contribute to a better understanding of the heterogeneity and anisotropy of the play.


Geophysics ◽  
1984 ◽  
Vol 49 (5) ◽  
pp. 493-508 ◽  
Author(s):  
Robert H. Tatham ◽  
Donald V. Goolsbee

Hard water‐bottom marine environments, such as offshore western Florida, have presented particular problems in the acquisition and processing of seismic reflection data. One problem has been the limited angle of incidence (less than critical) available to P‐wave penetration into the subsurface. Mode conversion from P‐wave to S‐waves (SV), however, is quite efficient over a broad range of angles of incidence. After the success of a previously reported physical model experiment, an experimental line was acquired offshore western Florida. The 19 mile line, located approximately 100 miles west of Key West, Florida, was shot and processed. Three key factors have contributed to the successful recording of mode‐converted S‐wave reflections: (1) recognition of the effect of the group length on attenuation of energy arriving at large angles of incidence; (2) tau‐p processing techniques that allow separation of energy by angle of incidence; and (3) velocity filtering over a range of hyperbolic normal‐moveout (NMO) velocities as part of the forward tau‐p transform. These three factors, two of them data processing techniques, have allowed separation of P‐ and S‐wave energy in the marine environment. Overall, S‐wave reflections have been unambiguously identified to a reflection time of 2 sec and may be interpreted to a reflection time of 2 sec. Integrating an S‐wave section with P‐wave interpretations of offshore Florida data allows an independent confirmation of structural events. This independent confirmation may be more significant than improvements in the P‐wave data quality alone. Lateraly stable [Formula: see text] values are computed in intervals 1500 to 5000 ft thick and to S‐wave reflection times as great as 3 sec. The opportunity of [Formula: see text], interpretations for lithologic identification, gas thickness estimates, and general stratigraphic trap exploration makes mode‐converted shear waves a new tool in this area.


Author(s):  
B. T. Ojo ◽  
M. T. Olowokere ◽  
M. I. Oladapo

Poor or low data quality usually has an adverse effect on the quantitative usage of (4D) seismic data for accurate analysis. Repeatability of 4D Seismic or time-lapse survey is considered as a vital tool for effective, potent, and impressive monitoring of productivity of reservoirs. Inconsistencies and disagreement of ‘time-lapse’ data will greatly affect the accuracy and outcome of research when comparing two or more seismic surveys having low repeatability. Correlation is a statistic procedure that measures the linear relation between all points of two variables. Error due to acquisition and processing must be checked for before interpretation in order to minimize exploration failure and the number of dry holes drilled. The seismic data available for this study comprises of 779 crosslines and 494 inlines. The 4D seismic data consisting of the base Seismic shot in 1998 before production and the monitor Seismic shot in 2010 at different stages of hydrocarbon production were cross correlated to ascertain repeatability between the two vintages. A global average matching process was applied while phase and time shift were estimated using the Russell-Liang technique. Two pass full shaping filters were applied for the phase matching. Maximum and minimum ‘cross-correlation’ are 0.85 (85%) and 0.60 (60%) respectively. Statistics of the ‘cross-correlation’ shift show standard deviation  (0.3), variance (0.12), and root mean square (0.78). For high percentage repeatability and maximum correlations, the requested correlation threshold is 0.7 but 1 and 0.99 were obtained for the first and the second matching respectively.  Conclusively, the overall results show that there is high repeatability between the 4D seismic data used and the data can be employed conveniently for accurate ‘time-lapse’ (future) production monitoring and investigation on the field.


Geophysics ◽  
2018 ◽  
Vol 83 (5) ◽  
pp. U51-U61
Author(s):  
Xufei Gong ◽  
Qizhen Du ◽  
Qiang Zhao ◽  
Pengyuan Sun ◽  
Jianlei Zhang ◽  
...  

Wave-equation datuming (WED) techniques have demonstrated superiority when waves occur on the acquisition surface nonvertically, and traditional static corrections based on the time shift become inaccurate. Meanwhile, as for multicomponent data, those scalar techniques can hardly maintain the vector characteristics for the following multicomponent data processing flows. Considering this, we have developed an elastic-wave datuming approach to handle the static corrections for multicomponent data. Different from those existing scalar WED techniques, the multicomponent data are first decomposed into multicomponent P- and S-wave data. Then, the decomposed data are transformed into the [Formula: see text]-[Formula: see text] domain, and they are extrapolated from the acquisition surface to the datum using the one-way elastic-wave continuation. Finally, the datumed multicomponent data are reconstructed at the output datum by adding up the datumed P- and S-wave data. This elastic WED can guarantee that the same wave modes on different components are equally datumed, and the data remain multicomponent so that they are still applicable to multicomponent-joint processing techniques. Finally, several test examples involved in this paper have proved our method’s effectiveness in multicomponent data datuming application.


2000 ◽  
Vol 3 (01) ◽  
pp. 88-97 ◽  
Author(s):  
R.D. Benson ◽  
T.L. Davis

Summary This article presents the results of a multidisciplinary, four-dimensional (4D) (time-lapse), three-component (3C) (multicomponent) seismic study of a CO2 injection project in vacuum field, New Mexico. The ability to sense bulk rock/fluid properties with 4D, 3C seismology enables characterization of the most important transport property of a reservoir, namely, permeability. Because of the high volume resolution of the 4D, 3C seismology, we can monitor the sweep efficiency of a production process to see if reserves are bypassed by channeling around lower permeability parts of the reservoir and the rate at which the channeling occurs. In doing so, we can change production processes to sweep the reservoir more efficiently. Introduction Improving reservoir performance and enhancing hydrocarbon recovery while reducing environmental impact are critical to the future of the petroleum industry. To do this, it must be possible to characterize reservoir parameters including fluid properties and their changes with time, i.e., dynamic reservoir characterization. The objectives of our research arerepeated acquisition of a three-dimensional (3D), three-component (3C) seismic survey;demonstrate the ability of 3D, 3C, and four-dimensional (4D), 3C seismology to detect and monitor rock/fluid property change associated with a production process;incorporate geological, petrophysical, petroleum engineering, and other geophysical studies;refine the reservoir model and recommend procedures for scaling up from a pilot injection program to partial field flood to achieve maximum sweep efficiency and minimize bypassed reservoir zones;link bulk rock/fluid property variation monitored by time-lapse multicomponent (4D, 3C) seismic surveying to dynamic attributes of the reservoir including permeability, fluids, and flow characterization. Three-dimensional, 3C seismology involves seismic data acquisition in three orientations at each receiver location—two orthogonal horizontal and one vertical. When three source components are used, nine times the amount of data of a conventional P-wave 3D survey can be recorded. Horizontal components of source and receiver displacements enable shear- (S-) wave recording; this is a powerful complement to vertical P-wave recording. Three-dimensional, 3C seismic surveys provide significantly more information about the rock/fluid properties of a reservoir than can be achieved from conventional P-wave seismic surveys alone. By combining P- and S-wave recording, the seismic ability to determine rock/fluid property changes in the subsurface is increased. Seismic wave propagation includes travel time, reflectivity, and the effects of anisotropy and attenuation. In-situ stress orientation and relative magnitudes can be derived from seismic anisotropy. Rock/fluid properties, including lithology and porosity, may be obtained from comparative travel times or velocities of P and S waves. Other rock/fluid properties, including permeability, may be determined from comparative P and S anisotropy, travel time, reflectivity, and attenuation measurements. By combining P- and S-wave recording, seismic wave propagation characteristics can be transformed into reservoir parameters. Introducing time as the "fourth dimension," new time-lapse (4D), 3C seismology is a tool to monitor production processes and to determine reservoir property variations under changing conditions. Using 4D, 3C seismic monitoring as an integral part of dynamic reservoir characterization, refinements can be made to production processes to improve reservoir hydrocarbon recovery. VP/VS ratios for both the fast S1 shear component and slow S2 shear component may provide a tool for separating bulk rock changes due to fluid property variations from bulk rock changes due to effective stress variations. Changes in shear wave anisotropy may reflect varying concentrations of open fractures and low aspect ratio pore structure in both a spatial and temporal sense across the reservoir. The permeability of a formation, or the connectivity of the pore space, will be the target in 4D, 3C seismology. Refinements made to reservoir characterization techniques and their applications, now extending into the fourth dimension, are an important new area of research. Benefits of this research will include improved reservoir characterization and correlative increased hydrocarbon recovery and reduction in operating costs through improved reservoir management. Geologic Setting Since early Permian time, the general evolution of the portion of the Permian Basin which includes vacuum field is that of a progressively shallowing-upward carbonate platform. Aggrading and prograding cycles represent, respectively, the results of high stand and still stand sea levels. At the shelf edge these platform carbonates typically grade into reef-type deposits such as the Abo, Goat Seep, and Capitan formations. The San Andres is an exception; no reef-like rocks have been detected. Beyond the shelf edge, in the Delaware basin, clastic rocks, especially siliciclastics, were deposited during a lowstand sea level. Vacuum field is located on a large anticlinal structure that plunges slightly to the east-northeast. The San Andres and Grayburg formations correspond to the rim of a broad carbonate shelf province to the north and northwest, northwest shelf, and of a deeper intracratonic basin, Delaware basin, on the southeast and east.1 The overall area including the Midland basin, northern and eastern shelves, and central basin platform are part of a major restricted intracratonic basin which existed during Permian time. West Texas and southeast New Mexico were in the low latitudes throughout the late Paleozoic period, making them an ideal location for carbonate sedimentation. As a consequence of this tropical environment, broad carbonate shelves were established on the margins of the Delaware and Midland basins.2


Geophysics ◽  
1995 ◽  
Vol 60 (3) ◽  
pp. 631-650 ◽  
Author(s):  
Mark E. Mathisen ◽  
Anthony A. Vasiliou ◽  
Paul Cunningham ◽  
J. Shaw ◽  
J. H. Justice ◽  
...  

Time‐lapse crosswell seismic data acquired with a cemented receiver cable have been processed into P‐ and S‐wave tomograms which image heavy oil sand lithofacies and changes as a result of steam injection. Twenty‐seven crosswell surveys were acquired between two wells over a 3.5 month period before, during, and after a 34‐day, 30 MBBL [Formula: see text] steam injection cycle. Interpretation was based on correlations with reservoir data and models, observation well data, and engineering documentation of the production history and steam cycle. Baseline S‐ and P‐wave tomograms image reservoir sand flow units and areas affected by past cyclic steam injection. S‐wave tomograms define lithology and porosity contrasts between the excellent reservoir quality, “high flow” turbidite channel facies and the interbedded “low to moderate flow” bioturbated levee facies. The reservoir dip of approximately 20° is defined by the velocity contrast between lithofacies. P‐wave baseline tomograms image lithology, porosity, structure, and several low velocity zones caused by past steam injection. Previous steam‐heat injection caused the formation of gas which reduced velocities as much as several thousand ft/s (600 m/s), an amount which obscures the velocity contrast between lithofacies and smaller velocity reductions as a result of temperature alone. Time‐lapse and difference P‐wave tomograms document several areas with small decreases in velocity during steam injection and larger decreases after cyclic steam injection. Velocity reductions range from 300 to 900 ft/s (90 to 270 m/s) adjacent to and above injectors located 20 to 50 feet (6 to 15 m) from the tomogram cross‐section. Poisson’s ratio tomograms show a significant decrease (.10) in the same area, and include low values indicative of gas saturation. Continuous injectors located 50 to 350 feet (15 to 100 m) from the survey area also caused a progressive decrease in velocity of the “high flow” channel sands during the time‐lapse survey. Interdisciplinary interpretation indicates that tomograms not only complement other borehole‐derived reservoir characterization and temperature monitoring data but can be used to quantitatively characterize interwell reservoir properties and monitor changes as a result of the thermal recovery process. Monitoring results over 3.5 months confirms that stratification has controlled the flow of steam, in contrast to gravity override. This suggests that tomographic images of reservoir flow‐units and gas‐bearing high temperature zones should be useful for positioning wells and optimizing injection intervals, steam volumes, and producing well completions.


2018 ◽  
Vol 6 (4) ◽  
pp. SN101-SN118 ◽  
Author(s):  
Vincent Clochard ◽  
Bryan C. DeVault ◽  
David Bowen ◽  
Nicolas Delépine ◽  
Kanokkarn Wangkawong

The Kevin Dome [Formula: see text] storage project, located in northern Montana, attempted to characterize the Duperow Formation as a potential long-term storage zone for injected [Formula: see text]. A multicomponent (9C) seismic survey was acquired for the Big Sky Carbon Sequestration Partnership over a portion of the Kevin Dome using P- and S-wave sources. Prestack migrated PP, PS, SH, and SV data sets were generated. We then applied several stratigraphic inversion workflows using one or several kinds of seismic wavefield at the same time resulting in joint inversions of each data set. The aim of our study is to demonstrate the benefits of doing quadri-joint inversion of PP-, PS-, SH-, and SV-wavefields for the recovery of the elastic earth parameters, especially the S-wave impedance and density. These are crucial parameters because they can help determine lithology and porefill in the reservoir characterization workflow. Because the inversion workflow always uses the original seismic data recorded in its own time domain, it is necessary to compute registration laws between PP-PS-, PP-SH-, and PP-SV-wavefields using a time shift computation procedure (warping) based on inverted S-wave impedances from inversion of a single wavefield. This generated a significant improvement over methods that rely on attempting to match trace waveforms that may have a different phase, frequency content, and polarity. Finally, we wanted to investigate the reliability of the quadri-joint inversion results in the Bakken/Banff Formations, which have less lateral geologic variation than the underlying Duperow target. This interval shares many of the geophysical characterization challenges common to shale reservoirs in other North American basins. We computed geomechanical parameters, such as Poisson’s ratio and Young’s modulus, which are a proxy for brittleness. Comparison of these results with independent laboratory measurements in the Bakken interval demonstrates the superiority of the quadri-joint inversion method to the traditional inversion using P-wave data only.


Sign in / Sign up

Export Citation Format

Share Document