The effects of migration velocity errors on traveltime accuracy in prestack Kirchhoff time migration and the image of PS converted waves

Geophysics ◽  
2006 ◽  
Vol 71 (2) ◽  
pp. S73-S83 ◽  
Author(s):  
Hengchang Dai ◽  
Xiang-Yang Li

We analyze prestack PS migration images and their focusing sensitivity to errors in the computed PS traveltimes. The key analysis tool is a formula that defines PS traveltimes errors as explicit functions of velocity model errors. The most important factors in this formula are the PS velocity and the P-to-S velocity ratio. Analysis shows that the error in PS traveltime for shallow events is usually larger than that for deep events for a given error in the velocity model. Also the PS traveltime is affected more severely by errors in the PS-velocity model than in the P-to-S velocity ratio. The effect of traveltime errors increases with dip angle of reflectors. Numerical analysis shows that, for a fixed scatterpoint, the effect of the PS-wave velocity error is several times larger than the effect of the error in the P-to-S velocity ratio. Examples from field data show that the PS-wave velocity must be estimated accurately with errors less than 1% in order perfectly flatten the events in common-image-point (CIP) gathers. In contrast, an error in the PS-velocity ratio of up to several percent is allowed. This suggests that for acceptable PS-wave migration, only the PS-velocity model and a rough estimate of the P-to-S velocity ratio is needed. This finding is useful for processing PS-wave data because it is difficult and time consuming to estimate the velocity ratio accurately from the real data. This finding is also useful for our understanding of PS-wave behavior and for PS-wave imaging.

Geophysics ◽  
2012 ◽  
Vol 77 (6) ◽  
pp. S131-S143 ◽  
Author(s):  
Alexander Klokov ◽  
Sergey Fomel

Common-reflection angle migration can produce migrated gathers either in the scattering-angle domain or in the dip-angle domain. The latter reveals a clear distinction between reflection and diffraction events. We derived analytical expressions for events in the dip-angle domain and found that the shape difference can be used for reflection/diffraction separation. We defined reflection and diffraction models in the Radon space. The Radon transform allowed us to isolate diffractions from reflections and noise. The separation procedure can be performed after either time migration or depth migration. Synthetic and real data examples confirmed the validity of this technique.


Geophysics ◽  
2021 ◽  
pp. 1-50
Author(s):  
German Garabito ◽  
José Silas dos Santos Silva ◽  
Williams Lima

In land seismic data processing, the prestack time migration (PSTM) image remains the standard imaging output, but a reliable migrated image of the subsurface depends on the accuracy of the migration velocity model. We have adopted two new algorithms for time-domain migration velocity analysis based on wavefield attributes of the common-reflection-surface (CRS) stack method. These attributes, extracted from multicoverage data, were successfully applied to build the velocity model in the depth domain through tomographic inversion of the normal-incidence-point (NIP) wave. However, there is no practical and reliable method for determining an accurate and geologically consistent time-migration velocity model from these CRS attributes. We introduce an interactive method to determine the migration velocity model in the time domain based on the application of NIP wave attributes and the CRS stacking operator for diffractions, to generate synthetic diffractions on the reflection events of the zero-offset (ZO) CRS stacked section. In the ZO data with diffractions, the poststack time migration (post-STM) is applied with a set of constant velocities, and the migration velocities are then selected through a focusing analysis of the simulated diffractions. We also introduce an algorithm to automatically calculate the migration velocity model from the CRS attributes picked for the main reflection events in the ZO data. We determine the precision of our diffraction focusing velocity analysis and the automatic velocity calculation algorithms using two synthetic models. We also applied them to real 2D land data with low quality and low fold to estimate the time-domain migration velocity model. The velocity models obtained through our methods were validated by applying them in the Kirchhoff PSTM of real data, in which the velocity model from the diffraction focusing analysis provided significant improvements in the quality of the migrated image compared to the legacy image and to the migrated image obtained using the automatically calculated velocity model.


Geophysics ◽  
2019 ◽  
Vol 84 (4) ◽  
pp. S229-S238 ◽  
Author(s):  
Martina Glöckner ◽  
Sergius Dell ◽  
Benjamin Schwarz ◽  
Claudia Vanelle ◽  
Dirk Gajewski

To obtain an image of the earth’s subsurface, time-imaging methods can be applied because they are reasonably fast, are less sensitive to velocity model errors than depth-imaging methods, and are usually easy to parallelize. A powerful tool for time imaging consists of a series of prestack time migrations and demigrations. We have applied multiparameter stacking techniques to obtain an initial time-migration velocity model. The velocity model building proposed here is based on the kinematic wavefield attributes of the common-reflection surface (CRS) method. A subsequent refinement of the velocities uses a coherence filter that is based on a predetermined threshold, followed by an interpolation and smoothing. Then, we perform a migration deconvolution to obtain the final time-migrated image. The migration deconvolution consists of one iteration of least-squares migration with an estimated Hessian. We estimate the Hessian by nonstationary matching filters, i.e., in a data-driven fashion. The model building uses the framework of the CRS, and the migration deconvolution is fully automated. Therefore, minimal user interaction is required to carry out the velocity model refinement and the image update. We apply the velocity refinement and migration deconvolution approaches to complex synthetic and field data.


Geophysics ◽  
2014 ◽  
Vol 79 (3) ◽  
pp. S105-S111 ◽  
Author(s):  
Sheng Xu ◽  
Feng Chen ◽  
Bing Tang ◽  
Gilles Lambare

When using seismic data to image complex structures, the reverse time migration (RTM) algorithm generally provides the best results when the velocity model is accurate. With an inexact model, moveouts appear in common image gathers (CIGs), which are either in the surface offset domain or in subsurface angle domain; thus, the stacked image is not well focused. In extended image gathers, the strongest energy of a seismic event may occur at non-zero-lag in time-shift or offset-shift gathers. Based on the operation of RTM images produced by the time-shift imaging condition, the non-zero-lag time-shift images exhibit a spatial shift; we propose an approach to correct them by a second pass of migration similar to zero-offset depth migration; the proposed approach is based on the local poststack depth migration assumption. After the proposed second-pass migration, the time-shift CIGs appear to be flat and can be stacked. The stack enhances the energy of seismic events that are defocused at zero time lag due to the inaccuracy of the model, even though the new focused events stay at the previous positions, which might deviate from the true positions of seismic reflection. With the stack, our proposed approach is also able to attenuate the long-wavelength RTM artifacts. In the case of tilted transverse isotropic migration, we propose a scheme to defocus the coherent noise, such as migration artifacts from residual multiples, by applying the original migration velocity model along the symmetry axis but with different anisotropic parameters in the second pass of migration. We demonstrate that our approach is effective to attenuate the coherent noise at subsalt area with two synthetic data sets and one real data set from the Gulf of Mexico.


Geophysics ◽  
2019 ◽  
Vol 84 (2) ◽  
pp. R235-R250 ◽  
Author(s):  
Zhiming Ren ◽  
Zhenchun Li ◽  
Bingluo Gu

Full-waveform inversion (FWI) has the potential to obtain an accurate velocity model. Nevertheless, it depends strongly on the low-frequency data and the initial model. When the starting model is far from the real model, FWI tends to converge to a local minimum. Based on a scale separation of the model (into the background model and reflectivity model), reflection waveform inversion (RWI) can separate out the tomography term in the conventional FWI kernel and invert for the long-wavelength components of the velocity model by smearing the reflected wave residuals along the transmission (or “rabbit-ear”) paths. We have developed a new elastic RWI method to build the P- and S-wave velocity macromodels. Our method exploits a traveltime-based misfit function to highlight the contribution of tomography terms in the sensitivity kernels and a sensitivity kernel decomposition scheme based on the P- and S-wave separation to suppress the high-wavenumber artifacts caused by the crosstalk of different wave modes. Numerical examples reveal that the gradients of the background models become sufficiently smooth owing to the decomposition of sensitivity kernels and the traveltime-based misfit function. We implement our elastic RWI in an alternating way. At each loop, the reflectivity model is generated by elastic least-squares reverse time migration, and then the background model is updated using the separated traveltime kernels. Our RWI method has been successfully applied in synthetic and real reflection seismic data. Inversion results demonstrate that the proposed method can retrieve preferable low-wavenumber components of the P- and S-wave velocity models, which are reliable to serve as a starting model for conventional elastic FWI. Also, our method with a two-stage inversion workflow, first updating the P-wave velocity using the PP kernels and then updating the S-wave velocity using the PS kernels, is feasible and robust even when P- and S-wave velocities have different structures.


Geophysics ◽  
2008 ◽  
Vol 73 (5) ◽  
pp. S195-S205 ◽  
Author(s):  
Hengchang Dai ◽  
Xiang-Yang Li

We investigated the effect of errors in the migration-velocity model of PS-converted waves on the traveltime calculated in prestack Kirchhoff time migration in weak anisotropic media. The prestack-Kirchhoff-time-migration operator contains four parameters: the PS-converted-wave velocity, the vertical velocity ratio, the effective velocity ratio, and the anisotropic parameter. We derived four error factors that correspond to those parameters. Theoretical and numerical analyses of the error factors show them all to be inversely proportional to the velocity and to traveltime. Traveltime errors for shallow events usually are larger than for deep events. Error in PS-converted-wave velocity causes the largest traveltime error, and error in the vertical velocity ratio causes the smallest traveltime error. For a small horizontal-distance/depth ratio, the error in the effective velocity ratio affects traveltime more than does the anisotropic-parameter error. However, the anisotropic-parameter error affects traveltime more when the horizontal-distance/depth ratio is larger. Traveltime errors caused by errors in effective velocity ratio and the anisotropic parameter mainly stem from the converted-S-wave raypath of the PS-converted waves. To save processing time and cost, PS-wave velocity can be estimated accurately without an accurate vertical velocity ratio, effective velocity ratio, and anisotropic parameter. These findings are useful for understanding PS-wave behavior and for PS-wave imaging in anisotropic media.


Geophysics ◽  
2008 ◽  
Vol 73 (5) ◽  
pp. VE353-VE360 ◽  
Author(s):  
Moshe Reshef

When interval velocity analysis is conducted over complex geologic regions, scattering-angle gathers may cause significant inaccuracies. These inaccuracies are related to the loss of structural dip information when generating common-image gathers (CIGs). In this study, the idea of performing interval velocity analysis in the dip-angle domain was examined and demonstrated with synthetic and real data examples. The effects of migration velocity errors and their identification in this domain were analyzed in detail. Carrying the analysis directly on dip-angle gathers is practically impossible. The ability to perform a standard analysis based on flattening the events in the CIGs is achieved by replacing the dip-angle measure with an equivalent offset measure. This equivalent offset provides higher sensitivity to velocity errors and may improve the accuracy of the resultant velocity model.


Geophysics ◽  
2018 ◽  
Vol 83 (3) ◽  
pp. B105-B117 ◽  
Author(s):  
Julien Cotton ◽  
Hervé Chauris ◽  
Eric Forgues ◽  
Paul Hardouin

In 4D seismic, the velocity model used for imaging and reservoir characterization can change as production from the reservoir progresses. This is particularly true for heavy oil reservoirs stimulated by steam injection. In the context of sparse and low-fold seismic acquisitions, conventional migration velocity analyses can be inadequate because of a poorly and irregularly sampled offset dimension. We update the velocity model in the context of daily acquisitions with buried sources and receivers. The main objective is to demonstrate that subtle time-lapse effects can be detected over the calendar time on onshore sparse acquisitions. We develop a modified version of the conventional prestack time migration to detect velocity changes obtained after crosscorrelation of the base and monitor surveys. This technique is applied on a heavy oil real data set from the Netherlands and reveals how the steam diffuses over time within the reservoir.


Geophysics ◽  
2019 ◽  
Vol 84 (6) ◽  
pp. S581-S598 ◽  
Author(s):  
Bin He ◽  
Yike Liu ◽  
Yanbao Zhang

In the past few decades, the least-squares reverse time migration (LSRTM) algorithm has been widely used to enhance images of complex subsurface structures by minimizing the data misfit function between the predicted and observed seismic data. However, this algorithm is sensitive to the accuracy of the migration velocity model, which, in the case of real data applications (generally obtained via tomography), always deviates from the true velocity model. Therefore, conventional LSRTM faces a cycle-skipping problem caused by a smeared image when using an inaccurate migration velocity model. To address the cycle-skipping problem, we have introduced an angle-domain LSRTM algorithm. Unlike the conventional LSRTM algorithm, our method updates the common source-propagation angle image gathers rather than the stacked image. An extended Born modeling operator in the common source-propagation angle domain is was derived, which reproduced kinematically accurate data in the presence of velocity errors. Our method can provide more focused images with high resolution as well as angle-domain common-image gathers (ADCIGs) with enhanced resolution and balanced amplitudes. However, because the velocity model is not updated, the provided image can have errors in depth. Synthetic and field examples are used to verify that our method can robustly improve the quality of the ADCIGs and the finally stacked images with affordable computational costs in the presence of velocity errors.


Sign in / Sign up

Export Citation Format

Share Document