Anisotropic 3D full-waveform inversion

Geophysics ◽  
2013 ◽  
Vol 78 (2) ◽  
pp. R59-R80 ◽  
Author(s):  
Michael Warner ◽  
Andrew Ratcliffe ◽  
Tenice Nangoo ◽  
Joanna Morgan ◽  
Adrian Umpleby ◽  
...  

We have developed and implemented a robust and practical scheme for anisotropic 3D acoustic full-waveform inversion (FWI). We demonstrate this scheme on a field data set, applying it to a 4C ocean-bottom survey over the Tommeliten Alpha field in the North Sea. This shallow-water data set provides good azimuthal coverage to offsets of 7 km, with reduced coverage to a maximum offset of about 11 km. The reservoir lies at the crest of a high-velocity antiformal chalk section, overlain by about 3000 m of clastics within which a low-velocity gas cloud produces a seismic obscured area. We inverted only the hydrophone data, and we retained free-surface multiples and ghosts within the field data. We invert in six narrow frequency bands, in the range 3 to 6.5 Hz. At each iteration, we selected only a subset of sources, using a different subset at each iteration; this strategy is more efficient than inverting all the data every iteration. Our starting velocity model was obtained using standard PSDM model building including anisotropic reflection tomography, and contained epsilon values as high as 20%. The final FWI velocity model shows a network of shallow high-velocity channels that match similar features in the reflection data. Deeper in the section, the FWI velocity model reveals a sharper and more-intense low-velocity region associated with the gas cloud in which low-velocity fingers match the location of gas-filled faults visible in the reflection data. The resulting velocity model provides a better match to well logs, and better flattens common-image gathers, than does the starting model. Reverse-time migration, using the FWI velocity model, provides significant uplift to the migrated image, simplifying the planform of the reservoir section at depth. The workflows, inversion strategy, and algorithms that we have used have broad application to invert a wide-range of analogous data sets.

2020 ◽  
Author(s):  
Gaurav Tomar ◽  
Christopher J. Bean ◽  
Satish C. Singh

<p>Rockall trough lies to the west of Ireland in NE Atlantic, it has a complex geology and has been debated for controversial geology for more than two decades. We have performed Full waveform inversion (FWI) on 2D seismic data set that is recorded in 2013-14 by using 10 km long streamer, this 2D seismic line is situated near the North-West margin in the Rockall Bank area. Full waveform inversion (FWI) is a powerful technique for obtaining elastic properties of the sub-surface from the seismic data. FWI provides properties of the sub-surface at the scale of the wavelength of the data set. We used travel time tomography on downward extrapolated data set to obtain a smooth starting velocity model for FWI. Downward continuation is a technique that enhances the first arrival and also reduces the computation time for forward modelling in FWI. The velocity model obtained from refraction travel time tomography, indicates the velocity from 1.6-4 km/s for the sediments and we have also observed very high velocity ~ 6-7.5 km/s just 3 km below sea-floor. We have performed FWI using these TTT velocity model as a starting model and inverted the refractions along with the wide angle reflections in the frequency range of 3-10 hz. FWI results gives the velocity of 6-7.2 km/s as well as defines geological structures that can be seen in the migrated seismic section. These high velocity structures could be a part of the continental crust and/or lower oceanic crustal igneous rocks like Gabbro.</p>


Geophysics ◽  
2019 ◽  
Vol 84 (1) ◽  
pp. R1-R10 ◽  
Author(s):  
Zhendong Zhang ◽  
Tariq Alkhalifah ◽  
Zedong Wu ◽  
Yike Liu ◽  
Bin He ◽  
...  

Full-waveform inversion (FWI) is an attractive technique due to its ability to build high-resolution velocity models. Conventional amplitude-matching FWI approaches remain challenging because the simplified computational physics used does not fully represent all wave phenomena in the earth. Because the earth is attenuating, a sample-by-sample fitting of the amplitude may not be feasible in practice. We have developed a normalized nonzero-lag crosscorrelataion-based elastic FWI algorithm to maximize the similarity of the calculated and observed data. We use the first-order elastic-wave equation to simulate the propagation of seismic waves in the earth. Our proposed objective function emphasizes the matching of the phases of the events in the calculated and observed data, and thus, it is more immune to inaccuracies in the initial model and the difference between the true and modeled physics. The normalization term can compensate the energy loss in the far offsets because of geometric spreading and avoid a bias in estimation toward extreme values in the observed data. We develop a polynomial-type weighting function and evaluate an approach to determine the optimal time lag. We use a synthetic elastic Marmousi model and the BigSky field data set to verify the effectiveness of the proposed method. To suppress the short-wavelength artifacts in the estimated S-wave velocity and noise in the field data, we apply a Laplacian regularization and a total variation constraint on the synthetic and field data examples, respectively.


2019 ◽  
Vol 7 (2) ◽  
pp. SB43-SB52 ◽  
Author(s):  
Adriano Gomes ◽  
Joe Peterson ◽  
Serife Bitlis ◽  
Chengliang Fan ◽  
Robert Buehring

Inverting for salt geometry using full-waveform inversion (FWI) is a challenging task, mostly due to the lack of extremely low-frequency signal in the seismic data, the limited penetration depth of diving waves using typical acquisition offsets, and the difficulty in correctly modeling the amplitude (and kinematics) of reflection events associated with the salt boundary. However, recent advances in reflection FWI (RFWI) have allowed it to use deep reflection data, beyond the diving-wave limit, by extracting the tomographic term of the FWI reflection update, the so-called rabbit ears. Though lacking the resolution to fully resolve salt geometry, we can use RFWI updates as a guide for refinements in the salt interpretation, adding a partially data-driven element to salt velocity model building. In addition, we can use RFWI to update sediment velocities in complex regions surrounding salt, where ray-based approaches typically struggle. In reality, separating the effects of sediment velocity errors from salt geometry errors is not straightforward in many locations. Therefore, iterations of RFWI plus salt scenario tests may be necessary. Although it is still not the fully automatic method that has been envisioned for FWI, this combined approach can bring significant improvement to the subsalt image, as we examine on field data examples from the Gulf of Mexico.


Geophysics ◽  
2019 ◽  
Vol 84 (3) ◽  
pp. R411-R427 ◽  
Author(s):  
Gang Yao ◽  
Nuno V. da Silva ◽  
Michael Warner ◽  
Di Wu ◽  
Chenhao Yang

Full-waveform inversion (FWI) is a promising technique for recovering the earth models for exploration geophysics and global seismology. FWI is generally formulated as the minimization of an objective function, defined as the L2-norm of the data residuals. The nonconvex nature of this objective function is one of the main obstacles for the successful application of FWI. A key manifestation of this nonconvexity is cycle skipping, which happens if the predicted data are more than half a cycle away from the recorded data. We have developed the concept of intermediate data for tackling cycle skipping. This intermediate data set is created to sit between predicted and recorded data, and it is less than half a cycle away from the predicted data. Inverting the intermediate data rather than the cycle-skipped recorded data can then circumvent cycle skipping. We applied this concept to invert cycle-skipped first arrivals. First, we picked up the first breaks of the predicted data and the recorded data. Second, we linearly scaled down the time difference between the two first breaks of each shot into a series of time shifts, the maximum of which was less than half a cycle, for each trace in this shot. Third, we moved the predicted data with the corresponding time shifts to create the intermediate data. Finally, we inverted the intermediate data rather than the recorded data. Because the intermediate data are not cycle-skipped and contain the traveltime information of the recorded data, FWI with intermediate data updates the background velocity model in the correct direction. Thus, it produces a background velocity model accurate enough for carrying out conventional FWI to rebuild the intermediate- and short-wavelength components of the velocity model. Our numerical examples using synthetic data validate the intermediate-data concept for tackling cycle skipping and demonstrate its effectiveness for the application to first arrivals.


2016 ◽  
Vol 4 (4) ◽  
pp. SU17-SU24 ◽  
Author(s):  
Vanessa Goh ◽  
Kjetil Halleland ◽  
René-Édouard Plessix ◽  
Alexandre Stopin

Reducing velocity inaccuracy in complex settings is of paramount importance for limiting structural uncertainties, therefore helping the geologic interpretation and reservoir characterization. Shallow velocity variations due, for instance, to gas accumulations or carbonate reefs, are a common issue offshore Malaysia. These velocity variations are difficult to image through standard reflection-based velocity model building. We have applied full-waveform inversion (FWI) to better characterize the upper part of the earth model for a shallow-water field, located in the Central Luconia Basin offshore Sarawak. We have inverted a narrow-azimuth data set with a maximum inline offset of 4.4 km. Thanks to dedicated broadband preprocessing of the data set, we could enhance the signal-to-noise ratio in the 2.5–10 Hz frequency band. We then applied a multiparameter FWI to estimate the background normal moveout velocity and the [Formula: see text]-parameter. Full-waveform inversion together with broadband data processing has helped to better define the faults and resolve the thin layers in the shallow clastic section. The improvements in the velocity model brought by FWI lead to an improved image of the structural closure and flanks. Moreover, the increased velocity resolution helps in distinguishing between two different geologic interpretations.


2019 ◽  
Vol 38 (3) ◽  
pp. 220-225
Author(s):  
Laurence Letki ◽  
Mike Saunders ◽  
Monica Hoppe ◽  
Milos Cvetkovic ◽  
Lewis Goss ◽  
...  

The Argentina Austral Malvinas survey comprises 13,784 km of 2D data extending from the shelf to the border with the Falkland Islands. The survey was acquired using a 12,000 m streamer and continuous recording technology and was processed through a comprehensive broadband prestack depth migration workflow focused on producing a high-resolution, high-fidelity data set. Source- and receiver-side deghosting to maximize the bandwidth of the data was an essential ingredient in the preprocessing. Following the broadband processing sequence, a depth-imaging workflow was implemented, with the initial model built using a time tomography approach. Several passes of anisotropic reflection tomography provided a significant improvement in the velocity model prior to full-waveform inversion (FWI). Using long offsets, FWI made use of additional information contained in the recorded wavefield, including the refracted and diving wave energy. FWI resolved more detailed velocity variations both in the shallow and deeper section and culminated in an improved seismic image.


Geophysics ◽  
2013 ◽  
Vol 78 (2) ◽  
pp. R37-R46 ◽  
Author(s):  
Wansoo Ha ◽  
Changsoo Shin

Full waveform inversion is a method used to recover subsurface parameters, and it requires heavy computational resources. We present a cyclic shot subsampling method to make the full waveform inversion efficient while maintaining the quality of the inversion results. The cyclic method subsamples the shots at a regular interval and changes the shot subset at each iteration step. Using this method, we can suppress the aliasing noise present in regular-interval subsampling. We compared the cyclic method with divide-and-conquer, random, and random-in-each-subgroup subsampling methods using the Laplace-domain full waveform inversion. We found examples of a 2D marine field data set from the Gulf of Mexico and a 3D synthetic salt velocity model. In the inversion examples using the subsampling methods, we could reduce the computation time and obtain results comparable to that without a subsampling technique. The cyclic method and two random subsampling methods yielded similar results; however, the cyclic method generated the best results, especially when the number of shot subsamples was small, as expected. We also examined the effect of subsample updating frequency. The updating frequency does not have a significant effect on the results when the number of subsamples is large. In contrast, frequent subsample updating becomes important when the number of subsamples is small. The random-in-each-subgroup scheme showed the best results if we did not update the subsamples frequently, while the cyclic method suffers from aliasing. The results suggested that the cyclic subsampling scheme can be an alternative to the random schemes and the distributed subsampling schemes with a frequently changing subset are better than lumped subsampling schemes.


Geophysics ◽  
2019 ◽  
Vol 84 (2) ◽  
pp. R175-R183 ◽  
Author(s):  
Shan Qu ◽  
Eric Verschuur ◽  
Yangkang Chen

As full-waveform inversion (FWI) is a nonunique and typically ill-posed inversion problem, it needs proper regularization to avoid cycle skipping. To reduce the nonlinearity of FWI, we have developed joint migration inversion (JMI) as an alternative, explaining the reflection data with decoupled velocity and reflectivity parameters. However, the velocity update may also suffer from being trapped in local minima. To optimally include geologic information, we have developed FWI/JMI with directional total variation (TV) as an L1-norm regularization on the velocity. We design the directional TV operator based on the local dip field, instead of ignoring the local structural direction of the subsurface and only using horizontal and vertical gradients in the traditional TV. The local dip field is estimated using plane-wave destruction based on a raw reflectivity model, which is usually calculated from the initial velocity model. With two complex synthetic examples, based on the Marmousi model, we determine that our method is much more effective compared with FWI/JMI without regularization and FWI/JMI with the conventional TV regularization. In the JMI-based example, we also determine that L1 directional TV works better than L2 directional Laplacian smoothing. In addition, by comparing these two examples, it can be seen that the impact of regularization is larger for FWI than for JMI because in JMI the velocity model only explains the propagation effects and, thereby, makes it less sensitive to the details in the velocity model.


Sign in / Sign up

Export Citation Format

Share Document