scholarly journals Analisis Model Kecepatan Gelombang-P pada Coal-Seam Gas Studi Kasus Cekungan Sumatera Selatan, Indonesia

2020 ◽  
Vol 6 (2) ◽  
pp. 113-120
Author(s):  
Harnanti Yogaputri Hutami ◽  
Fitriyani Fitriyani ◽  
Tiara Larasati Priniarti ◽  
Handoyo Handoyo

The rock physics model is one effective yet challenging way to investigate the coal-seam gas potential in Indonesia. However, because of the complex conditions of the Coal-Seam Gas Reservoirs, it is difficult to establish models. Despite the scarce modeling, this study aims to estimate the relation of gas-saturated within pores of coal seam to the elastic properties of rock, which is P-wave velocity. First, the coal seam minerals are applied to quantify matrix moduli using the Voigt-Reuss-Hill Average method. Pride’s simple equation is used to estimate the elastic properties of the coal seam at dry condition (zero gas saturation). Finally, Biot-Gassmann’s theory is applied to determine the elastic properties of coal seam with fully gas saturated. As the result, the proposed model showed that there is a significant negative correlation between gas content with both density and P-wave velocity of the coal seam. Finally, this P-wave velocity model of gas-saturated coal seams should be properly useful as the quick look for identifying coal seam gas potentials. 

2019 ◽  
Vol 38 (10) ◽  
pp. 762-769
Author(s):  
Patrick Connolly

Reflectivities of elastic properties can be expressed as a sum of the reflectivities of P-wave velocity, S-wave velocity, and density, as can the amplitude-variation-with-offset (AVO) parameters, intercept, gradient, and curvature. This common format allows elastic property reflectivities to be expressed as a sum of AVO parameters. Most AVO studies are conducted using a two-term approximation, so it is helpful to reduce the three-term expressions for elastic reflectivities to two by assuming a relationship between P-wave velocity and density. Reduced to two AVO components, elastic property reflectivities can be represented as vectors on intercept-gradient crossplots. Normalizing the lengths of the vectors allows them to serve as basis vectors such that the position of any point in intercept-gradient space can be inferred directly from changes in elastic properties. This provides a direct link between properties commonly used in rock physics and attributes that can be measured from seismic data. The theory is best exploited by constructing new seismic data sets from combinations of intercept and gradient data at various projection angles. Elastic property reflectivity theory can be transferred to the impedance domain to aid in the analysis of well data to help inform the choice of projection angles. Because of the effects of gradient measurement errors, seismic projection angles are unlikely to be the same as theoretical angles or angles derived from well-log analysis, so seismic data will need to be scanned through a range of angles to find the optimum.


2021 ◽  
Author(s):  
Dariusz Chlebowski ◽  
Zbigniew Burtan

AbstractA variety of geophysical methods and analytical modeling are applied to determine the rockburst hazard in Polish coal mines. In particularly unfavorable local conditions, seismic profiling, active/passive seismic tomography, as well as analytical state of stress calculating methods are recommended. They are helpful in verifying the reliability of rockburst hazard forecasts. In the article, the combined analysis of the state of stress determined by active seismic tomography and analytical modeling was conducted taking into account the relationship between the location of stress concentration zones and the level of rockburst hazard. A longwall panel in the coal seam 501 at a depth of ca.700 m in one of the hard coal mines operating in the Upper Silesian Coal Basin was a subject of the analysis. The seismic tomography was applied for the reconstruction of P-wave velocity fields. The analytical modeling was used to calculate the vertical stress states basing on classical solutions offered by rock mechanics. The variability of the P-wave velocity field and location of seismic anomaly in the coal seam in relation to the calculated vertical stress field arising in the mined coal seam served to assess of rockburst hazard. The applied methods partially proved their adequacy in practical applications, providing valuable information on the design and performance of mining operations.


1984 ◽  
Vol 74 (4) ◽  
pp. 1263-1274
Author(s):  
Lawrence H. Jaksha ◽  
David H. Evans

Abstract A velocity model of the crust in northwestern New Mexico has been constructed from an interpretation of direct, refracted, and reflected seismic waves. The model suggests a sedimentary section about 3 km thick with an average P-wave velocity of 3.6 km/sec. The crystalline upper crust is 28 km thick and has a P-wave velocity of 6.1 km/sec. The lower crust below the Conrad discontinuity has an average P-wave velocity of about 7.0 km/sec and a thickness near 17 km. Some evidence suggests that velocity in both the upper and lower crust increases with depth. The P-wave velocity in the uppermost mantle is 7.95 ± 0.15 km/sec. The total crustal thickness near Farmington, New Mexico, is about 48 km (datum = 1.6 km above sea level), and there is evidence for crustal thinning to the southeast.


2020 ◽  
Author(s):  
Jerome Fortin ◽  
Cedric Bailly ◽  
Mathilde Adelinet ◽  
Youri Hamon

<p>Linking ultrasonic measurements made on samples, with sonic logs and seismic subsurface data, is a key challenge for the understanding of carbonate reservoirs. To deal with this problem, we investigate the elastic properties of dry lacustrine carbonates. At one study site, we perform a seismic refraction survey (100 Hz), as well as sonic (54 kHz) and ultrasonic (250 kHz) measurements directly on outcrop and ultrasonic measurements on samples (500 kHz). By comparing the median of each data set, we show that the P wave velocity decreases from laboratory to seismic scale. Nevertheless, the median of the sonic measurements acquired on outcrop surfaces seems to fit with the seismic data, meaning that sonic acquisition may be representative of seismic scale. To explain the variations due to upscaling, we relate the concept of representative elementary volume with the wavelength of each scale of study. Indeed, with upscaling, the wavelength varies from millimetric to pluri-metric. This change of scale allows us to conclude that the behavior of P wave velocity is due to different geological features (matrix porosity, cracks, and fractures) related to the different wavelengths used. Based on effective medium theory, we quantify the pore aspect ratio at sample scale and the crack/fracture density at outcrop and seismic scales using a multiscale representative elementary volume concept. Results show that the matrix porosity that controls the ultrasonic P wave velocities is progressively lost with upscaling, implying that crack and fracture porosity impacts sonic and seismic P wave velocities, a result of paramount importance for seismic interpretation based on deterministic approaches.</p><p>Bailly, C., Fortin, J., Adelinet, M., & Hamon, Y. (2019). Upscaling of elastic properties in carbonates: A modeling approach based on a multiscale geophysical data set. Journal of Geophysical Research: Solid Earth, 124. https://doi.org/10.1029/2019JB018391</p>


Geophysics ◽  
2021 ◽  
pp. 1-52
Author(s):  
Yuzhu Liu ◽  
Xinquan Huang ◽  
Jizhong Yang ◽  
Xueyi Liu ◽  
Bin Li ◽  
...  

Thin sand-mud-coal interbedded layers and multiples caused by shallow water pose great challenges to conventional 3D multi-channel seismic techniques used to detect the deeply buried reservoirs in the Qiuyue field. In 2017, a dense ocean-bottom seismometer (OBS) acquisition program acquired a four-component dataset in East China Sea. To delineate the deep reservoir structures in the Qiuyue field, we applied a full-waveform inversion (FWI) workflow to this dense four-component OBS dataset. After preprocessing, including receiver geometry correction, moveout correction, component rotation, and energy transformation from 3D to 2D, a preconditioned first-arrival traveltime tomography based on an improved scattering integral algorithm is applied to construct an initial P-wave velocity model. To eliminate the influence of the wavelet estimation process, a convolutional-wavefield-based objective function for the preprocessed hydrophone component is used during acoustic FWI. By inverting the waveforms associated with early arrivals, a relatively high-resolution underground P-wave velocity model is obtained, with updates at 2.0 km and 4.7 km depth. Initial S-wave velocity and density models are then constructed based on their prior relationships to the P-wave velocity, accompanied by a reciprocal source-independent elastic full-waveform inversion to refine both velocity models. Compared to a traditional workflow, guided by stacking velocity analysis or migration velocity analysis, and using only the pressure component or other single-component, the workflow presented in this study represents a good approach for inverting the four-component OBS dataset to characterize sub-seafloor velocity structures.


Geophysics ◽  
2014 ◽  
Vol 79 (4) ◽  
pp. D205-D216 ◽  
Author(s):  
Xinding Fang ◽  
Michael C. Fehler ◽  
Arthur Cheng

Formation elastic properties near a borehole may be altered from their original state due to the stress concentration around the borehole. This can lead to an incorrect estimation of formation elastic properties measured from sonic logs. Previous work has focused on estimating the elastic properties of the formation surrounding a borehole under anisotropic stress loading. We studied the effect of borehole stress concentration on sonic logging in a moderately consolidated Berea sandstone using a two-step approach. First, we used an iterative approach, which combines a rock-physics model and a finite-element method, to calculate the stress-dependent elastic properties of the rock around a borehole subjected to an anisotropic stress loading. Second, we used the anisotropic elastic model obtained from the first step and a finite-difference method to simulate the acoustic response of the borehole. Although we neglected the effects of rock failure and stress-induced crack opening, our modeling results provided important insights into the characteristics of borehole P-wave propagation when anisotropic in situ stresses are present. Our simulation results were consistent with the published laboratory measurements, which indicate that azimuthal variation of the P-wave velocity around a borehole subjected to uniaxial loading is not a simple cosine function. However, on field scale, the azimuthal variation in P-wave velocity might not be apparent at conventional logging frequencies. We found that the low-velocity region along the wellbore acts as an acoustic focusing zone that substantially enhances the P-wave amplitude, whereas the high-velocity region caused by the stress concentration near the borehole results in a significantly reduced P-wave amplitude. This results in strong azimuthal variation of P-wave amplitude, which may be used to infer the in situ stress state.


2019 ◽  
Vol 133 ◽  
pp. 01011
Author(s):  
Jakub Kokowski ◽  
Zbigniew Szreder ◽  
Elżbieta Pilecka

In the study, the determining of the reference velocity of the P-wave in coal seams used in seismic profiling to assess increases and decreases in relative stresses at large depths has been presented. The seismic profiling method proposed by Dubinski in 1989 covers a range of depth up to 970 m. At present, coal seams exploitation in Polish coal mines is conducted at greater depths, even exceeding 1200 m, which creates the necessity for a new reference velocity model. The study presents an empirical mathematical model of the change of the P-wave velocity in coal seams in the geological conditions of the Jastrzebie coal mine. A power model analogous to the Dubinski’s one was elaborated with new constants. The calculations included the results from 35 measurements of seismic profiling carried out in various coal seams of the Jastrzebie mine at depths from 640 to 1200 m. The results obtained cause changes in the result of calculations of seismic anomalies. Future validation of the proposed model with larger data set will be required.


Geophysics ◽  
2000 ◽  
Vol 65 (1) ◽  
pp. 35-45
Author(s):  
Jarrod C. Dunne ◽  
Greg Beresford ◽  
Brian L. N Kennett

We developed guidelines for building a detailed elastic depth model by using an elastic synthetic seismogram that matched both prestack and stacked marine seismic data from the Gippsland Basin (Australia). Recomputing this synthetic for systematic variations upon the depth model provided insight into how each part of the model affected the synthetic. This led to the identification of parameters in the depth model that have only a minor influence upon the synthetic and suggested methods for estimating the parameters that are important. The depth coverage of the logging run is of prime importance because highly reflective layering in the overburden can generate noise events that interfere with deeper events. A depth sampling interval of 1 m for the P-wave velocity model is a useful lower limit for modeling the transmission response and thus maintaining accuracy in the tie over a large time interval. The sea‐floor model has a strong influence on mode conversion and surface multiples and can be built using a checkshot survey or by testing different trend curves. When an S-wave velocity log is unavailable, it can be replaced using the P-wave velocity model and estimates of the Poisson ratio for each significant geological formation. Missing densities can be replaced using Gardner’s equation, although separate substitutions are required for layers known to have exceptionally high or low densities. Linear events in the elastic synthetic are sensitive to the choice of inelastic attenuation values in the water layer and sea‐floor sediments, while a simple inelastic attenuation model for the consolidated sediments is often adequate. The usefulness of a 1-D depth model is limited by misties resulting from complex 3-D structures and the validity of the measurements obtained in the logging run. The importance of such mis‐ties can be judged, and allowed for in an interpretation, by recomputing the elastic synthetic after perturbing the depth model to simulate the key uncertainties. Taking the next step beyond using simplistic modeling techniques requires extra effort to achieve a satisfactory tie to each part of a prestack seismic record. This is rewarded by the greater confidence that can then be held in the stacked synthetic tie and applications such as noise identification, data processing benchmarking, AVO analysis, and inversion.


2021 ◽  
Author(s):  
V Lay ◽  
S Buske ◽  
SB Bodenburg ◽  
John Townend ◽  
R Kellett ◽  
...  

No description supplied


Sign in / Sign up

Export Citation Format

Share Document