Time-lapse inverse theory with applications

Geophysics ◽  
2016 ◽  
Vol 81 (6) ◽  
pp. R485-R501 ◽  
Author(s):  
Musa Maharramov ◽  
Biondo L. Biondi ◽  
Mark A. Meadows

Compaction in the reservoir overburden can impact production facilities and lead to a significant risk of well-bore failures. Prevalent practices of time-lapse seismic processing of 4D data above compacting reservoirs rely on picking time displacements and converting them into estimated velocity changes and subsurface deformation. This approach relies on prior data equalization and requires a significant amount of manual interpretation and quality control. We have developed methods for automatic detection of production-induced subsurface velocity changes from seismic data. We have evaluated a time-lapse inversion technique based on a simultaneous regularized full-waveform inversion (FWI) of multiple surveys. In our approach, baseline and monitor surveys are inverted simultaneously with a model-difference regularization penalizing nonphysical differences in the inverted models that are due to survey or computational repeatability issues. The primary focus of our work was the inversion of long-wavelength “blocky” changes in the subsurface model, and this was achieved using a phase-only FWI with a total-variation model-difference regularization. However, we have developed a multiscale extension of our method for recovering long- and short-wavelength production effects. We have developed a theoretical foundation of our method and analyzed its sensitivity to a realistic 1%–2% velocity deformation. The method was applied in a study of overburden dilation above the Gulf of Mexico Genesis field and recovered blocky negative-velocity anomalies above compacting reservoirs.

2019 ◽  
Vol 38 (12) ◽  
pp. 943-948 ◽  
Author(s):  
Musa Maharramov ◽  
Bram Willemsen ◽  
Partha S. Routh ◽  
Emily F. Peacock ◽  
Mark Froneberger ◽  
...  

We demonstrate that a workflow combining emergent time-lapse full-waveform inversion (FWI) and machine learning technologies can address the demand for faster time-lapse processing and analysis. During the first stage of our proposed workflow, we invert long-wavelength velocity changes using a tomographically enhanced version of multiparameter simultaneous reflection FWI with model-difference regularization. Short-wavelength changes are inverted during the second stage of the workflow by a specialized high-resolution image-difference tomography algorithm using a neural network. We discuss application areas for each component of the workflow and show the results of a West Africa case study.


2020 ◽  
Vol 223 (2) ◽  
pp. 811-824
Author(s):  
Chao Huang ◽  
Tieyuan Zhu

SUMMARY Rapid development of time-lapse seismic monitoring instrumentations has made it possible to collect dense time-lapse data for tomographically retrieving time-lapse (even continuous) images of subsurface changes. While traditional time-lapse full waveform inversion (TLFWI) algorithms are designed for sparse time-lapse surveys, they lack of effective temporal constraint on time-lapse data, and, more importantly, lack of the uncertainty estimation of the TLFWI results that is critical for further interpretation. Here, we propose a new data assimilation TLFWI method, using hierarchical matrix powered extended Kalman filter (HiEKF) to quantify the image uncertainty. Compared to existing Kalman filter algorithms, HiEKF allows to store and update a data-sparse representation of the cross-covariance matrices and propagate model errors without expensive operations involving covariance matrices. Hence, HiEKF is computationally efficient and applicable to 3-D TLFWI problems. Then, we reformulate TLFWI in the framework of HiEKF (termed hereafter as TLFWI-HiEKF) to predict time-lapse images of subsurface spatiotemporal velocity changes and simultaneously quantify the uncertainty of the inverted velocity changes over time. We demonstrate the validity and applicability of TLFWI–HiEKF with two realistic CO2 monitoring models derived from Frio-II and Cranfield CO2 injection sites, respectively. In both 2-D and 3-D examples, the inverted high-resolution time-lapse velocity results clearly reveal a continuous velocity reduction due to the injection of CO2. Moreover, the accuracy of the model is increasing over time by assimilating more time-lapse data while the standard deviation is decreasing over lapsed time. We expect TLFWI-HiEKF to be equipped with real-time seismic monitoring systems for continuously imaging the distribution of subsurface gas and fluids in the future large-scale CO2 sequestration experiments and reservoir management.


2021 ◽  
Vol 110 ◽  
pp. 103417
Author(s):  
Dong Li ◽  
Suping Peng ◽  
Xingguo Huang ◽  
Yinling Guo ◽  
Yongxu Lu ◽  
...  

Geophysics ◽  
2021 ◽  
pp. 1-77
Author(s):  
Danyelle da Silva ◽  
Edwin Fagua Duarte ◽  
Wagner Almeida ◽  
Mauro Ferreira ◽  
Francisco Alirio Moura ◽  
...  

We have designed a target-oriented methodology to perform Full Waveform Inversion using a frequency-domain wave propagator based on the so-called Patched Green’s Function (PGF) technique. Originally developed in condensed matter physics to describe electronic waves in materials, the PGF technique is easily adaptable to the case of wave propagation in a spatially variable media in general. By dividing the entire computational domain into two sections, namely the target area and the outside target area, we calculate the Green Functions related to each section separately. The calculations related to the section outside the target are performed only once at the beginning of inversion, whereas the calculations in the target area are performed repeatedly for each iteration of the inversion process. With the Green Functions of the separate areas, we calculate the Green Functions of the two systems patched together through the application of a Recursive Dyson equation. By performing 2D and time-lapse experiments on the Marmousi model and a Brazilian Pre-salt velocity model, we demonstrate that the target-oriented PGF reduces the computational time of the inversion without compromising accuracy. In fact, when compared with conventional FWI results, the PGF-based calculations are identical but done in a fraction of the time.


2017 ◽  
Author(s):  
Musa Maharramov ◽  
Ganglin Chen ◽  
Partha S. Routh ◽  
Anatoly I. Baumstein ◽  
Sunwoong Lee ◽  
...  

2021 ◽  
Vol 2056 (1) ◽  
pp. 012015
Author(s):  
M Malovichko ◽  
A Orazbayev ◽  
Yu Kloss ◽  
N Khokhlov

Abstract This note summarizes some preliminary results on the fast solution of the coefficient inverse problem for the Helmholtz equation, given measured pressure in a set of observation points. The Helmholtz equation is the model PDE for the harmonic problem of the linear theory of elasticity, and this work is a move in that direction. The problem has been the primary focus for several research areas, most notably seismic exploration. Still, practical problems are very challenging because they are non-linear and large. In this paper, we develop a novel numerical method for seismic full-waveform inversion based on Newton iterations. Its distinctive future is that it does not require the Jacobian of the target functional. Thus, in certain scenarios, it will perform only a fraction of computations comparing to the conventional Gauss-Newton algorithm. We present some early results on the Helmholtz equation in two dimensions.


Sign in / Sign up

Export Citation Format

Share Document