Efficient acoustic scalar wave equation modeling in VTI media

Geophysics ◽  
2020 ◽  
pp. 1-93
Author(s):  
Yury Nikonenko ◽  
Marwan Charara

We present a new approach for acoustic wave modeling in transversely isotropic media with a vertical axis of symmetry. This approach is based on using a pure acoustic wave equation derived from the basic physical laws – Hooke’s law and the equation of motion. We show that the conventional equation noted as pure quasi-P wave equation computes only one stress component. In our approach, there is no need to approximate the pseudo-differential operator for decomposition purposes. We make a discrete inverse Fourier transform of the desired frequency response contained in the pseudo-differential operator to build the corresponding spatial operator. We then cut off the operator with a window to reduce edge effects. As a result, the obtained spatial operator is applied locally to the wavefield through a simple convolution. Consequently, we derive an explicit numerical scheme for a pure quasi-P wave mode. The most important advantage of our method lies in its locality, which means that our spatial operator can be applied in any selected region separately. Our approach can be combined with classical fast finite-difference methods when media are isotropic or elliptically anisotropic, therefore avoiding spurious fields and reducing the total computational time and memory. The accuracy, stability, and the absence of the residual S-waves of our approach were demonstrated with several numerical examples.

Geophysics ◽  
2018 ◽  
Vol 83 (4) ◽  
pp. T175-T193 ◽  
Author(s):  
Enjiang Wang ◽  
Jing Ba ◽  
Yang Liu

It has been proved that the implicit spatial finite-difference (FD) method can obtain higher accuracy than explicit FD by using an even smaller operator length. However, when only second-order FD in time is used, the combined FD scheme is prone to temporal dispersion and easily becomes unstable when a relatively large time step is used. The time-space domain FD can suppress the temporal dispersion. However, because the spatial derivatives are solved explicitly, the method suffers from spatial dispersion and a large spatial operator length has to be adopted. We have developed two effective time-space-domain implicit FD methods for modeling 2D and 3D acoustic wave equations. First, the high-order FD is incorporated into the discretization for the second-order temporal derivative, and it is combined with the implicit spatial FD. The plane-wave analysis method is used to derive the time-space-domain dispersion relations, and two novel methods are proposed to determine the spatial and temporal FD coefficients in the joint time-space domain. First, we fix the implicit spatial FD coefficients and derive the quadratic convex objective function with respect to temporal FD coefficients. The optimal temporal FD coefficients are obtained by using the linear least-squares method. After obtaining the temporal FD coefficients, the SolvOpt nonlinear algorithm is applied to solve the nonquadratic optimization problem and obtain the optimized temporal and spatial FD coefficients simultaneously. The dispersion analysis, stability analysis, and modeling examples validate that the proposed schemes effectively increase the modeling accuracy and improve the stability conditions of the traditional implicit schemes. The computational efficiency is increased because the schemes can adopt larger time steps with little loss of spatial accuracy. To reduce the memory requirement and computational time for storing and calculating the FD coefficients, we have developed the representative velocity strategy, which only computes and stores the FD coefficients at several selected velocities. The modeling result of the 2D complicated model proves that the representative velocity strategy effectively reduces the memory requirements and computational time without decreasing the accuracy significantly when a proper velocity interval is used.


2013 ◽  
Vol 56 (6) ◽  
pp. 840-850 ◽  
Author(s):  
LIANG Wen-Quan ◽  
YANG Chang-Chun ◽  
WANG Yan-Fei ◽  
LIU Hong-Wei

2011 ◽  
Author(s):  
Ge Zhan ◽  
Reynam C. Pestana ◽  
Paul L. Stoffa

Geophysics ◽  
2007 ◽  
Vol 72 (1) ◽  
pp. C1-C7 ◽  
Author(s):  
Subhashis Mallick

Amplitude-variation-with-offset (AVO) and elastic-impedance (EI) analysis use an approximate plane P-wave reflection coefficient as a function of angle of incidence. AVO and EI both can be used in a three-term or a two-term formulation. This study uses synthetic data to demonstrate that the P-wave primary reflections at large offsets can be contaminated by reflections from other wave modes that can affect the quality of three-term AVO or EI results. The coupling of P-waves and S-waves in seismic-wave propagation through finely layered media generates the interfering wave modes. A methodology such as prestack-wave-equation modeling can properly account for these coupling effects. Both AVO and EI also assume a convolutional model whose accuracy decreases as incidence angles increase. On the other hand, wave-equation modeling is based on the rigorous solution to the wave equation and is valid for any incidence angle. Because wave interference is minimal at small angles, a two-term AVO/EI analysis that restricts input from small angles is likely to give more reliable parameter estimates than a three-term analysis. A three-term AVO/EI analysis should be used with caution and should be calibrated against well data and other data before being used for quantitative analysis.


2011 ◽  
Author(s):  
Ge Zhan ◽  
Reynam C. Pestana ◽  
Paul L. Stoffa

Geophysics ◽  
2013 ◽  
Vol 78 (5) ◽  
pp. WC41-WC50 ◽  
Author(s):  
Tariq Alkhalifah

Solving the anisotropic acoustic wave equation numerically using finite-difference methods introduces many problems and media restriction requirements, and it rarely contributes to the ability to resolve the anisotropy parameters. Among these restrictions are the inability to handle media with [Formula: see text] and the presence of shear-wave artifacts in the solution. Both limitations do not exist in the solution of the elliptical anisotropic acoustic wave equation. Using perturbation theory in developing the solution of the anisotropic acoustic wave equation allows direct access to the desired limitation-free solutions, that is, solutions perturbed from the elliptical anisotropic background medium. It also provides a platform for parameter estimation because of the ability to isolate the wavefield dependency on the perturbed anisotropy parameters. As a result, I derive partial differential equations that relate changes in the wavefield to perturbations in the anisotropy parameters. The solutions of the perturbation equations represented the coefficients of a Taylor-series-type expansion of the wavefield as a function of the perturbed parameter, which is in this case [Formula: see text] or the tilt of the symmetry axis. The expansion with respect to the symmetry axis allows use of an acoustic transversely isotropic media with a vertical symmetry axis (VTI) kernel to estimate the background wavefield and the corresponding perturbation coefficients. The VTI extrapolation kernel is about one-fourth the cost of the transversely isotropic model with a tilt in the symmetry axis kernel. Thus, for a small symmetry axis tilt, the cost of migration using a first-order expansion can be reduced. The effectiveness of the approach was demonstrated on the Marmousi model.


Sign in / Sign up

Export Citation Format

Share Document