Fluids and lithofacies prediction based on integration of well-log data and seismic inversion: a machine learning approach

Geophysics ◽  
2021 ◽  
pp. 1-67
Author(s):  
Luanxiao Zhao ◽  
Caifeng Zou ◽  
Yuanyuan Chen ◽  
Wenlong Shen ◽  
Yirong Wang ◽  
...  

Seismic prediction of fluid and lithofacies distributions is of great interest to reservoir characterization, geological model building, and flow unit delineation. Inferring fluids and lithofacies from seismic data under the framework of machine learning is commonly subject to issues of limited features, imbalanced data sets, and spatial constraints. As a consequence, an XGBoost based workflow, which takes feature engineering, data balancing, and spatial constraints into account, is proposed to predict the fluid and lithofacies distribution by integrating well-log and seismic data. The constructed feature set based on simple mathematical operations and domain knowledge outperforms the benchmark group consisting of conventional elastic attributes of P-impedance and Vp/Vs ratio. A radial basis function characterizing the weights of training samples according to the distances from the available wells to the target region is developed to impose spatial constraints on the model training process, significantly improving the prediction accuracy and reliability of gas sandstone. The strategy combining the synthetic minority oversampling technique (SMOTE) and spatial constraints further increases the F1 score of gas sandstone and also benefits the overall prediction performance of all the facies. The application of the combined strategy on prestack seismic inversion results generates a more geologically reasonable spatial distribution of fluids, thus verifying the robustness and effectiveness of the proposed workflow.

Geophysics ◽  
2016 ◽  
Vol 81 (5) ◽  
pp. C177-C191 ◽  
Author(s):  
Yunyue Li ◽  
Biondo Biondi ◽  
Robert Clapp ◽  
Dave Nichols

Seismic anisotropy plays an important role in structural imaging and lithologic interpretation. However, anisotropic model building is a challenging underdetermined inverse problem. It is well-understood that single component pressure wave seismic data recorded on the upper surface are insufficient to resolve a unique solution for velocity and anisotropy parameters. To overcome the limitations of seismic data, we have developed an integrated model building scheme based on Bayesian inference to consider seismic data, geologic information, and rock-physics knowledge simultaneously. We have performed the prestack seismic inversion using wave-equation migration velocity analysis (WEMVA) for vertical transverse isotropic (VTI) models. This image-space method enabled automatic geologic interpretation. We have integrated the geologic information as spatial model correlations, applied on each parameter individually. We integrate the rock-physics information as lithologic model correlations, bringing additional information, so that the parameters weakly constrained by seismic are updated as well as the strongly constrained parameters. The constraints provided by the additional information help the inversion converge faster, mitigate the ambiguities among the parameters, and yield VTI models that were consistent with the underlying geologic and lithologic assumptions. We have developed the theoretical framework for the proposed integrated WEMVA for VTI models and determined the added information contained in the regularization terms, especially the rock-physics constraints.


2019 ◽  
Vol 38 (2) ◽  
pp. 106-115 ◽  
Author(s):  
Phuong Hoang ◽  
Arcangelo Sena ◽  
Benjamin Lascaud

The characterization of shale plays involves an understanding of tectonic history, geologic settings, reservoir properties, and the in-situ stresses of the potential producing zones in the subsurface. The associated hydrocarbons are generally recovered by horizontal drilling and hydraulic fracturing. Historically, seismic data have been used mainly for structural interpretation of the shale reservoirs. A primary benefit of surface seismic has been the ability to locate and avoid drilling into shallow carbonate karsting zones, salt structures, and basement-related major faults which adversely affect the ability to drill and complete the well effectively. More recent advances in prestack seismic data analysis yield attributes that appear to be correlated to formation lithology, rock strength, and stress fields. From these, we may infer preferential drilling locations or sweet spots. Knowledge and proper utilization of these attributes may prove valuable in the optimization of drilling and completion activities. In recent years, geophysical data have played an increasing role in supporting well planning, hydraulic fracturing, well stacking, and spacing. We have implemented an integrated workflow combining prestack seismic inversion and multiattribute analysis, microseismic data, well-log data, and geologic modeling to demonstrate key applications of quantitative seismic analysis utilized in developing ConocoPhillips' acreage in the Delaware Basin located in Texas. These applications range from reservoir characterization to well planning/execution, stacking/spacing optimization, and saltwater disposal. We show that multidisciplinary technology integration is the key for success in unconventional play exploration and development.


2019 ◽  
Vol 38 (5) ◽  
pp. 332-332
Author(s):  
Yongyi Li ◽  
Lev Vernik ◽  
Mark Chapman ◽  
Joel Sarout

Rock physics links the physical properties of rocks to geophysical and petrophysical observations and, in the process, serves as a focal point in many exploration and reservoir characterization studies. Today, the field of rock physics and seismic petrophysics embraces new directions with diverse applications in estimating static and dynamic reservoir properties through time-variant mechanical, thermal, chemical, and geologic processes. Integration with new digital and computing technologies is gradually gaining traction. The use of rock physics in seismic imaging, prestack seismic analysis, seismic inversion, and geomechanical model building also contributes to the increase in rock-physics influence. This special section highlights current rock-physics research and practices in several key areas, namely experimental rock physics, rock-physics theory and model studies, and the use of rock physics in reservoir characterizations.


2001 ◽  
Vol 41 (2) ◽  
pp. 131
Author(s):  
A.G. Sena ◽  
T.M. Smith

The successful exploration for new reservoirs in mature areas, as well as the optimal development of existing fields, requires the integration of unconventional geological and geophysical techniques. In particular, the calibration of 3D seismic data to well log information is crucial to obtain a quantitative understanding of reservoir properties. The advent of new technology for prestack seismic data analysis and 3D visualisation has resulted in improved fluid and lithology predictions prior to expensive drilling. Increased reservoir resolution has been achieved by combining seismic inversion with AVO analysis to minimise exploration risk.In this paper we present an integrated and systematic approach to prospect evaluation in an oil/gas field. We will show how petrophysical analysis of well log data can be used as a feasibility tool to determine the fluid and lithology discrimination capabilities of AVO and inversion techniques. Then, a description of effective AVO and prestack inversion tools for reservoir property quantification will be discussed. Finally, the incorporation of the geological interpretation and the use of 3D visualisation will be presented as a key integration tool for the discovery of new plays.


Geophysics ◽  
2010 ◽  
Vol 75 (6) ◽  
pp. O57-O67 ◽  
Author(s):  
Daria Tetyukhina ◽  
Lucas J. van Vliet ◽  
Stefan M. Luthi ◽  
Kees Wapenaar

Fluvio-deltaic sedimentary systems are of great interest for explorationists because they can form prolific hydrocarbon plays. However, they are also among the most complex and heterogeneous ones encountered in the subsurface, and potential reservoir units are often close to or below seismic resolution. For seismic inversion, it is therefore important to integrate the seismic data with higher resolution constraints obtained from well logs, whereby not only the acoustic properties are used but also the detailed layering characteristics. We have applied two inversion approaches for poststack, time-migrated seismic data to a clinoform sequence in the North Sea. Both methods are recursive trace-based techniques that use well data as a priori constraints but differ in the way they incorporate structural information. One method uses a discrete layer model from the well that is propagated laterally along the clinoform layers, which are modeled as sigmoids. The second method uses a constant sampling rate from the well data and uses horizontal and vertical regularization parameters for lateral propagation. The first method has a low level of parameterization embedded in a geologic framework and is computationally fast. The second method has a much higher degree of parameterization but is flexible enough to detect deviations in the geologic settings of the reservoir; however, there is no explicit geologic significance and the method is computationally much less efficient. Forward seismic modeling of the two inversion results indicates a good match of both methods with the actual seismic data.


2017 ◽  
Vol 5 (4) ◽  
pp. T523-T530
Author(s):  
Ehsan Zabihi Naeini ◽  
Mark Sams

Broadband reprocessed seismic data from the North West Shelf of Australia were inverted using wavelets estimated with a conventional approach. The inversion method applied was a facies-based inversion, in which the low-frequency model is a product of the inversion process itself, constrained by facies-dependent input trends, the resultant facies distribution, and the match to the seismic. The results identified the presence of a gas reservoir that had recently been confirmed through drilling. The reservoir is thin, with up to 15 ms of maximum thickness. The bandwidth of the seismic data is approximately 5–70 Hz, and the well data used to extract the wavelet used in the inversion are only 400 ms long. As such, there was little control on the lowest frequencies of the wavelet. Different wavelets were subsequently estimated using a variety of new techniques that attempt to address the limitations of short well-log segments and low-frequency seismic. The revised inversion showed greater gas-sand continuity and an extension of the reservoir at one flank. Noise-free synthetic examples indicate that thin-bed delineation can depend on the accuracy of the low-frequency content of the wavelets used for inversion. Underestimation of the low-frequency contents can result in missing thin beds, whereas underestimation of high frequencies can introduce false thin beds. Therefore, it is very important to correctly capture the full frequency content of the seismic data in terms of the amplitude and phase spectra of the estimated wavelets, which subsequently leads to a more accurate thin-bed reservoir characterization through inversion.


2020 ◽  
Vol 70 (1) ◽  
pp. 209-220
Author(s):  
Qazi Sohail Imran ◽  
◽  
Numair Ahmad Siddiqui ◽  
Abdul Halim Abdul Latif ◽  
Yasir Bashir ◽  
...  

Offshore petroleum systems are often very complex and subtle because of a variety of depositional environments. Characterizing a reservoir based on conventional seismic and well-log stratigraphic analysis in intricate settings often leads to uncertainties. Drilling risks, as well as associated subsurface uncertainties can be minimized by accurate reservoir delineation. Moreover, a forecast can also be made about production and performance of a reservoir. This study is aimed to design a workflow in reservoir characterization by integrating seismic inversion, petrophysics and rock physics tools. Firstly, to define litho facies, rock physics modeling was carried out through well log analysis separately for each facies. Next, the available subsurface information is incorporated in a Bayesian engine which outputs several simulations of elastic reservoir properties, as well as their probabilities that were used for post-inversion analysis. Vast areal coverage of seismic and sparse vertical well log data was integrated by geostatistical inversion to produce acoustic impedance realizations of high-resolution. Porosity models were built later using the 3D impedance model. Lastly, reservoir bodies were identified and cross plot analysis discriminated the lithology and fluid within the bodies successfully.


2021 ◽  
Vol 2 (12) ◽  
pp. 1229-1230
Author(s):  
Yasir Bashir ◽  
Nordiana Mohd Muztaza ◽  
Nur Azwin Ismail ◽  
Ismail Ahmad Abir ◽  
Andy Anderson Bery ◽  
...  

Seismic data acquired in the field show the subsurface reflectors or horizon among the geological strata, while the seismic inversion converts this reflector information into the acoustic impedance section which shows the layer properties based on lithology. The research aims to predict the porosity to identify the reservoir which is in between the tight layer. So, the output of the seismic inversion is much more batter than the seismic as it is closer to reality such as geology. Seismic inversion is frequently used to determine rock physics properties, for example, acoustic impedance and porosity.


2020 ◽  
Vol 2 (1) ◽  
Author(s):  
H Budiman, M.Y.N Khakim, A.K Affandi

Abstract   A research about reservoir characterization with analysis of AVO (Amplitude Variation with Offset) and seismic inversion, to extract the petrophysics properties on the EP field South Sumatra Basin. This research was conducted to identify rock lithology and its spread, to see the sensitive parameters of physical properties of rocks. This research uses the 3D seismic data PSTM (Pre Stack Time Migration) as input control with data from the EP-036 well containing sonic log, density, gamma rays, neutron and resistivity log.  From the results of data analysis on the well log chart EP-036, reservoir target zones are at a depth of 714 to 722 m (TVD) or time domain 768 to 780 ms.  The results of the analysis AVO is able to detect the presence of reservoir gas sand, based on the classification of Rutherford and Williams (1989) the gas sand layer into AVO class III that indicates low impedance contrast sands. To analyze the results of well log data in the cross plot EP-036 indicates lithology is a hydrocarbon. It is also reinforced with cross plot analysis and seismic inversion results in the form of the parameter value ??, Vp/Vs and Acoustic impedance with low porosity averaging 22 to 35%, indicating that the zone is a zone reservoir potential gas sand.   Keywords: Inversion, AVO, LMR, Reservoir Characterization.


Sign in / Sign up

Export Citation Format

Share Document