scholarly journals Seismic Interpretation and Inversion Leading to an Accurate Reservoir Characterization in a Carbonate Environment

2021 ◽  
Vol 2 (12) ◽  
pp. 1229-1230
Author(s):  
Yasir Bashir ◽  
Nordiana Mohd Muztaza ◽  
Nur Azwin Ismail ◽  
Ismail Ahmad Abir ◽  
Andy Anderson Bery ◽  
...  

Seismic data acquired in the field show the subsurface reflectors or horizon among the geological strata, while the seismic inversion converts this reflector information into the acoustic impedance section which shows the layer properties based on lithology. The research aims to predict the porosity to identify the reservoir which is in between the tight layer. So, the output of the seismic inversion is much more batter than the seismic as it is closer to reality such as geology. Seismic inversion is frequently used to determine rock physics properties, for example, acoustic impedance and porosity.

Geophysics ◽  
2001 ◽  
Vol 66 (4) ◽  
pp. 988-1001 ◽  
Author(s):  
T. Mukerji ◽  
A. Jørstad ◽  
P. Avseth ◽  
G. Mavko ◽  
J. R. Granli

Reliably predicting lithologic and saturation heterogeneities is one of the key problems in reservoir characterization. In this study, we show how statistical rock physics techniques combined with seismic information can be used to classify reservoir lithologies and pore fluids. One of the innovations was to use a seismic impedance attribute (related to the [Formula: see text] ratio) that incorporates far‐offset data, but at the same time can be practically obtained using normal incidence inversion algorithms. The methods were applied to a North Sea turbidite system. We incorporated well log measurements with calibration from core data to estimate the near‐offset and far‐offset reflectivity and impedance attributes. Multivariate probability distributions were estimated from the data to identify the attribute clusters and their separability for different facies and fluid saturations. A training data was set up using Monte Carlo simulations based on the well log—derived probability distributions. Fluid substitution by Gassmann’s equation was used to extend the training data, thus accounting for pore fluid conditions not encountered in the well. Seismic inversion of near‐offset and far‐offset stacks gave us two 3‐D cubes of impedance attributes in the interwell region. The near‐offset stack approximates a zero‐offset section, giving an estimate of the normal incidence acoustic impedance. The far offset stack gives an estimate of a [Formula: see text]‐related elastic impedance attribute that is equivalent to the acoustic impedance for non‐normal incidence. These impedance attributes obtained from seismic inversion were then used with the training probability distribution functions to predict the probability of occurrence of the different lithofacies in the interwell region. Statistical classification techniques, as well as geostatistical indicator simulations were applied on the 3‐D seismic data cube. A Markov‐Bayes technique was used to update the probabilities obtained from the seismic data by taking into account the spatial correlation as estimated from the facies indicator variograms. The final results are spatial 3‐D maps of not only the most likely facies and pore fluids, but also their occurrence probabilities. A key ingredient in this study was the exploitation of physically based seismic‐to‐reservoir property transforms optimally combined with statistical techniques.


Geophysics ◽  
2020 ◽  
Vol 85 (6) ◽  
pp. M97-M105
Author(s):  
Runhai Feng ◽  
Thomas Mejer Hansen ◽  
Dario Grana ◽  
Niels Balling

We propose to invert reservoir porosity from poststack seismic data using an innovative approach based on deep-learning methods. We develop an unsupervised approach to circumvent the requirement of large volumes of labeled data sets for a conventional learning process. We apply convolutional neural networks (CNN) on seismic data to predict the relative porosity that is to be added to a low-frequency prior component. We then apply a forward model to synthesize seismic data based on a source wavelet and an acoustic impedance converted from the network-determined porosity. The parameters in the CNN are iteratively updated to minimize the error between recorded and simulated seismic data. We test the capability of our deep-learning approach to estimate reservoir porosity using a synthetic rock-physics model with two different signal-to-noise ratios. We also apply the proposed method to a real case study of seismic data acquired for hydrocarbon exploration of clastic reservoirs in the Vienna Basin. Instead of randomly assigning neural parameters, we use pretrained weights and biases at a previous location as initialization values for the next location, to preserve the geologically lateral continuity of the layers’ physical properties. As shown by these analyses, the unsupervised CNN-based scheme provides more or equally accurate results than standard methods for porosity estimation from seismically inverted acoustic impedance, which makes it a promising tool in seismic reservoir characterization with less user intervention.


2021 ◽  
Author(s):  
Khalid Obaid ◽  
Abdelwahab Noufal ◽  
Abdulrahman Almessabi ◽  
Atef Abdelaal ◽  
Karim Elsadany ◽  
...  

Abstract This study summarizes the efforts taken to provide reliable reservoir characterizations products to mitigate seismic interpretation challenges and delineation of the reservoirs. ADNOC has conducted seismic exploration activities to assess Miocene to Upper Cretaceous aged reservoirs in East Onshore Abu Dhabi. The Oligo-Miocene section comprises of interbedded salt (mainly halite), anhydrite, limestones and marls. Deposited in the foreland basin related to the Oman thrust-belt. Ranging in thickness from nearly 1.5 km in the depocenter to almost nil on the forebulge located to the west of the studied area. The well data based geological model suggests that initially porous rocks (presumably grain-supported carbonates) encompassed polyphase sulfate cementation during recurrent subaerial exposure in which pores and grains were recrystallized sometimes completely too massive, tight anhydrite beds. This heterogeneity of the complex shallow section showing high variation of velocity impact seismic imaging, and interpretation to model the stratigraphic/structural framework and link it with reservoir characterization. Hence, ADNOC decided to conduct a trial on state-of-art technique Litho-Petro-Elastic (LPE) AVA Inversion to mitigate the seismic interpretation challenges and delineate the reservoirs. The LPE AVA inversion provides a single-loop approach to reservoir characterization based on rock physics models and compaction trends, reducing the dependency on a detailed prior the low frequency model, Where the rock modelling and lithology classification are not separate steps but interact directly with the seismic AVO inversion for optimal estimates of lithologies and elastic properties. The LPE inversion scope requires seismic data conditioning such as CMP gathers de-noising, de-multiple, flattening and amplitude preservation, in addition to detailed log conditioning, petro-elastic and rock physics analysis to maximize the quality and value of the results. The study proved that the LPE AVA Inversion can be used to guide seismic interpreters in mapping the structural framework in challenging seismic data, as it managed to improve the prospect evaluation.


Geophysics ◽  
2011 ◽  
Vol 76 (5) ◽  
pp. WB53-WB65 ◽  
Author(s):  
Huyen Bui ◽  
Jennifer Graham ◽  
Shantanu Kumar Singh ◽  
Fred Snyder ◽  
Martiris Smith

One of the main goals of seismic inversion is to obtain high-resolution relative and absolute impedance for reservoir properties prediction. We aim to study whether the results from seismic inversion of subsalt data are sufficiently robust for reliable reservoir characterization. Approximately [Formula: see text] of poststack, wide-azimuth, anisotropic (vertical transverse isotropic) wave-equation migration seismic data from 50 Outer Continental Shelf blocks in the Green Canyon area of the Gulf of Mexico were inverted in this study. A total of four subsalt wells and four subsalt seismic interpreted horizons were used in the inversion process, and one of the wells was used for a blind test. Our poststack inversion method used an iterative discrete spike inversion method, based on the combination of space-adaptive wavelet processing to invert for relative acoustic impedance. Next, the dips were estimated from seismic data and converted to a horizon-like layer sequence field that was used as one of the inputs into the low-frequency model. The background model was generated by incorporating the well velocities, seismic velocity, seismic interpreted horizons, and the previously derived layer sequence field in the low-frequency model. Then, the relative acoustic impedance volume was scaled by adding the low-frequency model to match the calculated acoustic impedance logs from the wells for absolute acoustic impedance. Finally, the geological information and rock physics data were incorporated into the reservoir properties assessment for sand/shale prediction in two main target reservoirs in the Miocene and Wilcox formations. Overall, the poststack inversion results and the sand/shale prediction showed good ties at the well locations. This was clearly demonstrated in the blind test well. Hence, incorporating rock physics and geology enables poststack inversion in subsalt areas.


Geophysics ◽  
2016 ◽  
Vol 81 (5) ◽  
pp. C177-C191 ◽  
Author(s):  
Yunyue Li ◽  
Biondo Biondi ◽  
Robert Clapp ◽  
Dave Nichols

Seismic anisotropy plays an important role in structural imaging and lithologic interpretation. However, anisotropic model building is a challenging underdetermined inverse problem. It is well-understood that single component pressure wave seismic data recorded on the upper surface are insufficient to resolve a unique solution for velocity and anisotropy parameters. To overcome the limitations of seismic data, we have developed an integrated model building scheme based on Bayesian inference to consider seismic data, geologic information, and rock-physics knowledge simultaneously. We have performed the prestack seismic inversion using wave-equation migration velocity analysis (WEMVA) for vertical transverse isotropic (VTI) models. This image-space method enabled automatic geologic interpretation. We have integrated the geologic information as spatial model correlations, applied on each parameter individually. We integrate the rock-physics information as lithologic model correlations, bringing additional information, so that the parameters weakly constrained by seismic are updated as well as the strongly constrained parameters. The constraints provided by the additional information help the inversion converge faster, mitigate the ambiguities among the parameters, and yield VTI models that were consistent with the underlying geologic and lithologic assumptions. We have developed the theoretical framework for the proposed integrated WEMVA for VTI models and determined the added information contained in the regularization terms, especially the rock-physics constraints.


Author(s):  
A. Ogbamikhumi ◽  
T. Tralagba ◽  
E. E. Osagiede

Field ‘K’ is a mature field in the coastal swamp onshore Niger delta, which has been producing since 1960. As a huge producing field with some potential for further sustainable production, field monitoring is therefore important in the identification of areas of unproduced hydrocarbon. This can be achieved by comparing production data with the corresponding changes in acoustic impedance observed in the maps generated from base survey (initial 3D seismic) and monitor seismic survey (4D seismic) across the field. This will enable the 4D seismic data set to be used for mapping reservoir details such as advancing water front and un-swept zones. The availability of good quality onshore time-lapse seismic data for Field ‘K’ acquired in 1987 and 2002 provided the opportunity to evaluate the effect of changes in reservoir fluid saturations on time-lapse amplitudes. Rock physics modelling and fluid substitution studies on well logs were carried out, and acoustic impedance change in the reservoir was estimated to be in the range of 0.25% to about 8%. Changes in reservoir fluid saturations were confirmed with time-lapse amplitudes within the crest area of the reservoir structure where reservoir porosity is 0.25%. In this paper, we demonstrated the use of repeat Seismic to delineate swept zones and areas hit with water override in a producing onshore reservoir.


2021 ◽  
Vol 40 (10) ◽  
pp. 751-758
Author(s):  
Fabien Allo ◽  
Jean-Philippe Coulon ◽  
Jean-Luc Formento ◽  
Romain Reboul ◽  
Laure Capar ◽  
...  

Deep neural networks (DNNs) have the potential to streamline the integration of seismic data for reservoir characterization by providing estimates of rock properties that are directly interpretable by geologists and reservoir engineers instead of elastic attributes like most standard seismic inversion methods. However, they have yet to be applied widely in the energy industry because training DNNs requires a large amount of labeled data that is rarely available. Training set augmentation, routinely used in other scientific fields such as image recognition, can address this issue and open the door to DNNs for geophysical applications. Although this approach has been explored in the past, creating realistic synthetic well and seismic data representative of the variable geology of a reservoir remains challenging. Recently introduced theory-guided techniques can help achieve this goal. A key step in these hybrid techniques is the use of theoretical rock-physics models to derive elastic pseudologs from variations of existing petrophysical logs. Rock-physics theories are already commonly relied on to generalize and extrapolate the relationship between rock and elastic properties. Therefore, they are a useful tool to generate a large catalog of alternative pseudologs representing realistic geologic variations away from the existing well locations. While not directly driven by rock physics, neural networks trained on such synthetic catalogs extract the intrinsic rock-physics relationships and are therefore capable of directly estimating rock properties from seismic amplitudes. Neural networks trained on purely synthetic data are applied to a set of 2D poststack seismic lines to characterize a geothermal reservoir located in the Dogger Formation northeast of Paris, France. The goal of the study is to determine the extent of porous and permeable layers encountered at existing geothermal wells and ultimately guide the location and design of future geothermal wells in the area.


2019 ◽  
Vol 38 (2) ◽  
pp. 106-115 ◽  
Author(s):  
Phuong Hoang ◽  
Arcangelo Sena ◽  
Benjamin Lascaud

The characterization of shale plays involves an understanding of tectonic history, geologic settings, reservoir properties, and the in-situ stresses of the potential producing zones in the subsurface. The associated hydrocarbons are generally recovered by horizontal drilling and hydraulic fracturing. Historically, seismic data have been used mainly for structural interpretation of the shale reservoirs. A primary benefit of surface seismic has been the ability to locate and avoid drilling into shallow carbonate karsting zones, salt structures, and basement-related major faults which adversely affect the ability to drill and complete the well effectively. More recent advances in prestack seismic data analysis yield attributes that appear to be correlated to formation lithology, rock strength, and stress fields. From these, we may infer preferential drilling locations or sweet spots. Knowledge and proper utilization of these attributes may prove valuable in the optimization of drilling and completion activities. In recent years, geophysical data have played an increasing role in supporting well planning, hydraulic fracturing, well stacking, and spacing. We have implemented an integrated workflow combining prestack seismic inversion and multiattribute analysis, microseismic data, well-log data, and geologic modeling to demonstrate key applications of quantitative seismic analysis utilized in developing ConocoPhillips' acreage in the Delaware Basin located in Texas. These applications range from reservoir characterization to well planning/execution, stacking/spacing optimization, and saltwater disposal. We show that multidisciplinary technology integration is the key for success in unconventional play exploration and development.


2019 ◽  
Vol 38 (5) ◽  
pp. 332-332
Author(s):  
Yongyi Li ◽  
Lev Vernik ◽  
Mark Chapman ◽  
Joel Sarout

Rock physics links the physical properties of rocks to geophysical and petrophysical observations and, in the process, serves as a focal point in many exploration and reservoir characterization studies. Today, the field of rock physics and seismic petrophysics embraces new directions with diverse applications in estimating static and dynamic reservoir properties through time-variant mechanical, thermal, chemical, and geologic processes. Integration with new digital and computing technologies is gradually gaining traction. The use of rock physics in seismic imaging, prestack seismic analysis, seismic inversion, and geomechanical model building also contributes to the increase in rock-physics influence. This special section highlights current rock-physics research and practices in several key areas, namely experimental rock physics, rock-physics theory and model studies, and the use of rock physics in reservoir characterizations.


Sign in / Sign up

Export Citation Format

Share Document