Transverse isotropy of the upper mantle in the vicinity of Pacific fracture zones

1969 ◽  
Vol 59 (1) ◽  
pp. 59-72
Author(s):  
Robert S. Crosson ◽  
Nikolas I. Christensen

Abstract Several recent investigations suggest that portions of the Earth's upper mantle behave anisotropically to seismic wave propagation. Since several types of anisotropy can produce azimuthal variations in Pn velocities, it is of particular geophysical interest to provide a framework for the recognition of the form or forms of anisotropy most likely to be manifest in the upper mantle. In this paper upper mantle material is assumed to possess the elastic properties of transversely isotropic media. Equations are presented which relate azimuthal variations in Pn velocities to the direction and angle of tilt of the symmetry axis of a transversely isotropic upper mantle. It is shown that the velocity data of Raitt and Shor taken near the Mendocino and Molokai fracture zones can be adequately explained by the assumption of transverse isotropy with a nearly horizontal symmetry axis.

Geophysics ◽  
2015 ◽  
Vol 80 (1) ◽  
pp. T51-T62 ◽  
Author(s):  
Qi Hao ◽  
Alexey Stovas ◽  
Tariq Alkhalifah

Analytic representation of the offset-midpoint traveltime equation for anisotropy is very important for prestack Kirchhoff migration and velocity inversion in anisotropic media. For transversely isotropic media with a vertical symmetry axis, the offset-midpoint traveltime resembles the shape of a Cheops’ pyramid. This is also valid for homogeneous 3D transversely isotropic media with a horizontal symmetry axis (HTI). We extended the offset-midpoint traveltime pyramid to the case of homogeneous 3D HTI. Under the assumption of weak anellipticity of HTI media, we derived an analytic representation of the P-wave traveltime equation and used Shanks transformation to improve the accuracy of horizontal and vertical slownesses. The traveltime pyramid was derived in the depth and time domains. Numerical examples confirmed the accuracy of the proposed approximation for the traveltime function in 3D HTI media.


Geophysics ◽  
1995 ◽  
Vol 60 (1) ◽  
pp. 268-284 ◽  
Author(s):  
Ilya Tsvankin

Description of reflection moveout from dipping interfaces is important in developing seismic processing methods for anisotropic media, as well as in the inversion of reflection data. Here, I present a concise analytic expression for normal‐moveout (NMO) velocities valid for a wide range of homogeneous anisotropic models including transverse isotropy with a tilted in‐plane symmetry axis and symmetry planes in orthorhombic media. In transversely isotropic media, NMO velocity for quasi‐P‐waves may deviate substantially from the isotropic cosine‐of‐dip dependence used in conventional constant‐velocity dip‐moveout (DMO) algorithms. However, numerical studies of NMO velocities have revealed no apparent correlation between the conventional measures of anisotropy and errors in the cosine‐of‐dip DMO correction (“DMO errors”). The analytic treatment developed here shows that for transverse isotropy with a vertical symmetry axis, the magnitude of DMO errors is dependent primarily on the difference between Thomsen parameters ε and δ. For the most common case, ε − δ > 0, the cosine‐of‐dip–corrected moveout velocity remains significantly larger than the moveout velocity for a horizontal reflector. DMO errors at a dip of 45 degrees may exceed 20–25 percent, even for weak anisotropy. By comparing analytically derived NMO velocities with moveout velocities calculated on finite spreads, I analyze anisotropy‐induced deviations from hyperbolic moveout for dipping reflectors. For transversely isotropic media with a vertical velocity gradient and typical (positive) values of the difference ε − δ, inhomogeneity tends to reduce (sometimes significantly) the influence of anisotropy on the dip dependence of moveout velocity.


Geophysics ◽  
2019 ◽  
Vol 84 (3) ◽  
pp. C143-C157 ◽  
Author(s):  
Song Jin ◽  
Alexey Stovas

Seismic wave reflection and transmission (R/T) responses characterize the subsurface local property, and the widely spread anisotropy has considerable influences even at small incident angles. We have considered layered transversely isotropic media with horizontal symmetry axes (HTI), and the symmetry axes were not restricted to be aligned. With the assumption of weak contrast across the interface, linear approximations for R/T coefficients normalized by vertical energy flux are derived based on a simple layered HTI model. We also obtain the approximation with the isotropic background medium under an additional weak anisotropy assumption. Numerical tests illustrate the good accuracy of the approximations compared with the exact results.


Geophysics ◽  
2017 ◽  
Vol 82 (1) ◽  
pp. C1-C7 ◽  
Author(s):  
Yevhen Kovalyshen ◽  
Joel Sarout ◽  
Jeremie Dautriat

We have developed a new numerical algorithm for inversion of ultrasonic data in transversely isotropic media. This algorithm is able to determine from the measured P-wave velocities the orientation of the symmetry axis of a rock sample and the Thomsen’s parameters, only assuming transverse isotropy. The inversion of ultrasonic data acquired on natural and potentially heterogeneous shale samples produced reasonable results. In addition, the algorithm was successfully tested on ultrasonic data acquired on synthetic samples with predefined orientations of the symmetry axis. An additional outcome of the algorithm is a simple approximation of Thomsen’s formulation, which can be effectively used for interpretation of seismic data in transversely isotropic media.


Geophysics ◽  
1991 ◽  
Vol 56 (10) ◽  
pp. 1584-1595 ◽  
Author(s):  
M. A. Pelissier ◽  
Anna Thomas‐Betts ◽  
Peter D. Vestergaard

The study of amplitude variations of reflected and transmitted seismic waves due to anistropy has received considerable attention in recent years, but most investigations have concentrated on the effect of transverse isotropy with the symmetry axis either vertical or horizontal. The published results on the whole tend to exclude mode conversions. Amplitudes of all reflected and transmitted wave modes are addressed for [Formula: see text]-waves incident on boundaries between isotropic and transversely isotropic media, the symmetry axis of which is oriented at 45 degrees to the interface. The results cover the full range of incidence angles and all “acquisition azimuth” in the plane of the interface. When the anistropy axis is not normal to the interface, the scattering coefficients are shown to be highly dependent on the azimuth. The pattern of azimuthal variation is especially complicated in the case of mode conversion, and scattering coefficient profiles that are 180 degrees apart are not the same. This has the implication that source‐receiver interchangeability does not hold and could have serious consequences to amplitude studies in split‐spread surveys. Both the [Formula: see text] and [Formula: see text] reflections show strong azimuthal variations, dependent on both the dip and the strike of the anisotropy axis. It may be possible to recover shown that the scattered amplitude patterns are dominantly controlled by the value of the elastic modulus [Formula: see text].


Geophysics ◽  
2002 ◽  
Vol 67 (5) ◽  
pp. 1564-1574 ◽  
Author(s):  
Vladimir Grechka ◽  
Andres Pech ◽  
Ilya Tsvankin

Accurate estimation of the velocity field is the most difficult step in imaging of seismic data for anisotropic media. Here, the velocity‐analysis problem is examined for the most common anisotropic model of sedimentary formations—transverse isotropy (TI) with arbitrary orientation of the symmetry axis. We show that supplementing wide‐azimuth reflected PP data with mode‐converted (PS) waves yields more stable estimates of the anisotropic coefficients and, in many cases, helps to constrain the model in depth. An important processing step preceding the inversion is computation of the traveltimes of the pure SS‐waves from those of the PP‐, and PS‐waves based on a technique recently developed by Grechka and Tsvankin. This procedure allows us to replace PS‐wave moveout, which is generally asymmetric with respect to zero offset, with the symmetric (hyperbolic on short spreads) moveout of the pure SS reflections. Then, generalizing the algorithm previously suggested for PP data, we develop a joint tomographic inversion of the normal‐moveout (NMO) ellipses and zero‐offset traveltimes of PP‐ and SS‐waves. Application of the method to wide‐azimuth PP and PS reflections from a dipping interface beneath a homogeneous TI layer shows that for a range of reflector dips and tilt angles of the symmetry axis, it is possible to build the anisotropic velocity field in the depth domain. We also extend our inversion procedure to layered TI media with curved interfaces and study its stability in the presence of noise and heterogeneity.


Sign in / Sign up

Export Citation Format

Share Document