High Density wide azimuth 3D Seismic data Processing technique and its applications

2017 ◽  
Author(s):  
Li Daoshan* ◽  
Cao Mengqi
Oseanika ◽  
2021 ◽  
Vol 1 (2) ◽  
pp. 1-12
Author(s):  
Trevi Jayanti Puspasari ◽  
Sumirah Sumirah

ABSTRAK Tuntutan untuk mengikuti perkembangan kebutuhan industri migas menjadi motivasi dalam mengembangkan teknik penerapan dan aplikasi akuisisi seismik multichannel 2D. Perkembangan kebutuhan eksplorasi industri migas tidak diimbangi dengan  anggaran peningkatan alat survei seismik milik negara termasuk yang terpasang di K.R. Baruna Jaya II – BPPT. Penerapan metode pseudo 3D pada disain survei dan pengolahan data dapat menjadi solusi efektif dan efisien dalam mengatasi persoalan tersebut. Metode Pseudo 3D merupakan suatu teknik akuisisi dan pengolahan data dengan menitik beratkan pada disain akuisisi dan inovasi pengolahan data seismik 2D menghasilkan penampang keruangan (3D) berdasarkan input data seismik yang hanya 2D. Penelitian ini bertujuan untuk mengaplikasikan metode pseudo 3D seismik di Cekungan Jawa Barat Utara menggunakan wahana KR. Baruna Jaya II yang dilakukan pada Desember 2009. Sebagai hasil, pengolahan data 2D lanjutan telah dilakukan dan diperoleh profil penampang seismik keruangan (3D). Profil hasil pengolahan data Pseudo 3D ini dapat menjadi acuan dalam pengambilan keputusan dan rencana survei berikutnya. Kata Kunci: Seismik Pseudo 3D, Seismik multichannel 2D, K.R. Baruna Jaya II, Cekungan Jawa Barat Utara. ABSTRACT [Aplication of Seismic Pseudo 3D in Nort West Java Basin Using K.R. Baruna Jaya II] The demand to follow the growth of  needs in the oil and gas industry is a motivation in the developing of techniques for assessment and applying 2D multichannel seismic acquisition. The development of exploration needs for the oil and gas industry is not matched by budget for an upgrade Government’s seismic equipment including equipment installed in K.R. Baruna Jaya II. Applied Pseudo 3D method in survey and seismic data processing can be an effective and efficient solution. The pseudo 3D method is a data acquisition and processing technique with an emphasis on the acquisition design and 2D seismic data processing innovation to produce a 3D seismic volume. This study aims to apply the pseudo 3D seismic method in the North West Java Basin using the K.R. Baruna Jaya II which was held in Desember 2009. As a Result, advanced seismic processing was carried out to output a seismic volume (3D) profile. This profile can be used as a reference in making decisions and planning the next survey.   Keywords:          Pseudo 3D Seismic, Seismic 2D multichannel, K.R. Baruna Jaya II, Nort West Java Basin.


Geophysics ◽  
2018 ◽  
Vol 83 (2) ◽  
pp. F9-F20 ◽  
Author(s):  
Can Oren ◽  
Robert L. Nowack

We present an overview of reproducible 3D seismic data processing and imaging using the Madagascar open-source software package. So far, there has been a limited number of studies on the processing of real 3D data sets using open-source software packages. Madagascar with its wide range of individual programs and tools available provides the capability to fully process 3D seismic data sets. The goal is to provide a streamlined illustration of the approach for the implementation of 3D seismic data processing and imaging using the Madagascar open-source software package. A brief introduction is first given to the Madagascar open-source software package and the publicly available 3D Teapot Dome seismic data set. Several processing steps are applied to the data set, including amplitude gaining, ground roll attenuation, muting, deconvolution, static corrections, spike-like random noise elimination, normal moveout (NMO) velocity analysis, NMO correction, stacking, and band-pass filtering. A 3D velocity model in depth is created using Dix conversion and time-to-depth scaling. Three-dimensional poststack depth migration is then performed followed by [Formula: see text]-[Formula: see text] deconvolution and structure-enhancing filtering of the migrated image to suppress random noise and enhance the useful signal. We show that Madagascar, as a powerful open-source environment, can be used to construct a basic workflow to process and image 3D seismic data in a reproducible manner.


2017 ◽  
Vol 5 (2) ◽  
pp. SF177-SF188 ◽  
Author(s):  
Wei Wang ◽  
Xiangzeng Wang ◽  
Hongliu Zeng ◽  
Quansheng Liang

In the study area, southeast of Ordos Basin in China, thick lacustrine shale/mudstone strata have been developed in the Triassic Yanchang Formation. Aiming to study these source/reservoir rocks, a 3D full-azimuth, high-density seismic survey was acquired. However, the surface in this region is covered by a thick loess layer, leading to seismic challenges such as complicated interferences and serious absorption of high frequencies. Despite a specially targeted seismic processing workflow, the prestack Kirchhoff time-migrated seismic data were still contaminated by severe noise, hindering seismic inversion and geologic interpretation. By taking account of the particular data quality and noise characteristics, we have developed a cascade workflow including three major methods to condition the poststack 3D seismic data. First, we removed the sticky coherent noise by a local pseudo [Formula: see text]-[Formula: see text]-[Formula: see text] Cadzow filtering. Then, we diminished the random noise by a structure-oriented filtering. Finally, we extended the frequency bandwidth with a spectral-balancing method based on the continuous wavelet transform. The data quality was improved after each of these steps through the proposed workflow. Compared with the original data, the conditioned final data show improved interpretability of the shale targets through geometric attribute analysis and depositional interpretation.


Sign in / Sign up

Export Citation Format

Share Document