scholarly journals APLIKASI METODE PSEUDO 3D SEISMIK DI CEKUNGAN JAWA BARAT UTARA MENGGUNAKAN K.R. BARUNA JAYA II

Oseanika ◽  
2021 ◽  
Vol 1 (2) ◽  
pp. 1-12
Author(s):  
Trevi Jayanti Puspasari ◽  
Sumirah Sumirah

ABSTRAK Tuntutan untuk mengikuti perkembangan kebutuhan industri migas menjadi motivasi dalam mengembangkan teknik penerapan dan aplikasi akuisisi seismik multichannel 2D. Perkembangan kebutuhan eksplorasi industri migas tidak diimbangi dengan  anggaran peningkatan alat survei seismik milik negara termasuk yang terpasang di K.R. Baruna Jaya II – BPPT. Penerapan metode pseudo 3D pada disain survei dan pengolahan data dapat menjadi solusi efektif dan efisien dalam mengatasi persoalan tersebut. Metode Pseudo 3D merupakan suatu teknik akuisisi dan pengolahan data dengan menitik beratkan pada disain akuisisi dan inovasi pengolahan data seismik 2D menghasilkan penampang keruangan (3D) berdasarkan input data seismik yang hanya 2D. Penelitian ini bertujuan untuk mengaplikasikan metode pseudo 3D seismik di Cekungan Jawa Barat Utara menggunakan wahana KR. Baruna Jaya II yang dilakukan pada Desember 2009. Sebagai hasil, pengolahan data 2D lanjutan telah dilakukan dan diperoleh profil penampang seismik keruangan (3D). Profil hasil pengolahan data Pseudo 3D ini dapat menjadi acuan dalam pengambilan keputusan dan rencana survei berikutnya. Kata Kunci: Seismik Pseudo 3D, Seismik multichannel 2D, K.R. Baruna Jaya II, Cekungan Jawa Barat Utara. ABSTRACT [Aplication of Seismic Pseudo 3D in Nort West Java Basin Using K.R. Baruna Jaya II] The demand to follow the growth of  needs in the oil and gas industry is a motivation in the developing of techniques for assessment and applying 2D multichannel seismic acquisition. The development of exploration needs for the oil and gas industry is not matched by budget for an upgrade Government’s seismic equipment including equipment installed in K.R. Baruna Jaya II. Applied Pseudo 3D method in survey and seismic data processing can be an effective and efficient solution. The pseudo 3D method is a data acquisition and processing technique with an emphasis on the acquisition design and 2D seismic data processing innovation to produce a 3D seismic volume. This study aims to apply the pseudo 3D seismic method in the North West Java Basin using the K.R. Baruna Jaya II which was held in Desember 2009. As a Result, advanced seismic processing was carried out to output a seismic volume (3D) profile. This profile can be used as a reference in making decisions and planning the next survey.   Keywords:          Pseudo 3D Seismic, Seismic 2D multichannel, K.R. Baruna Jaya II, Nort West Java Basin.

2019 ◽  
Vol 7 (3) ◽  
pp. SG1-SG9
Author(s):  
Donald A. Herron ◽  
Timothy E. Smith

Despite the ever-increasing use of 3D seismic data in today’s exploration and production activities, 2D seismic data continue to play an important role in the oil and gas industry. Interpretations of 2D regional and megaregional surveys are essential elements of integrated exploration programs, establishing frameworks for basin analysis, structural synthesis, and play fairway identification and mapping. When correlating and mapping horizons on 2D migrated seismic data, interpreters use certain practical techniques for handling structural misties, which are caused by the fundamental limitation of 2D migration to account for out-of-plane components of dip.


2014 ◽  
Vol 69 (6) ◽  
Author(s):  
Sudra Irawan ◽  
Sismanto Sismanto ◽  
Adang Sukmatiawan

Seismic data processing is one of the three stages in the seismic method that has an important role in the exploration of oil and gas. Without good data processing, it is impossible to get seismic image cross section for good interpretation. A research using seismic data processing was done to update the velocity model by horizon based tomography method in SBI Field, North West Java Basin. This method reduces error of seismic wave travel time through the analyzed horizon because the existence velocity of high lateral variation in research area. There are three parameters used to determine the accuracy of the resulting interval velocity model, namely, flat depth gathers, semblance residual moveout that coincides with the axis zero residual moveout, and the correspondence between image depth (horizon) with wells marker  (well seismic tie). Pre Stack Depth Migration (PSDM) form interval velocity model and updating using horizon-based tomography method gives better imaging of under-surfaced structure results than PSDM before using tomography. There are three faults found in the research area, two normal faults have southwest-northeast strike and the other has northwest-southeast strike. The thickness of reservoir in SBI field, North West Java Basin, is predicted between 71 to 175 meters and the hydrocarbon (oil) reserve is predicted about  with 22.6% porosity and 70.7% water saturation. 


Author(s):  
Sławomir OSZCZEPALSKI ◽  
Andrzej CHMIELEWSKI ◽  
Stanisław SPECZIK

The Polish Geological Institute – NRI has conducted investigations of the Kupferschiefer series since 1957, when the giant sediment-hosted stratiform Cu-Ag ore deposit was discovered in the central part of the Fore-Sudetic Monocline. Until 1991, a number of drilling programs were completed by PGI-NRI and later research has been focusing mainly on cooperation with oil and gas industry and their core material. Over the last few years, thanks to systematic examination of the drill holes located in the north-western extension, many prospective areas have been recognized and delineated. These prospects are located between Lubin-Sieroszowice deposit and the eastern part of the Zielona Góra oxidized field. In the Kożuchów area, the lower part of Zechstein copper-bearing series contain only relict sulphide mineralization accompanied by iron oxides while reduced rocks with metal sulphides occur in the uppermost part of Zechstein Limestone or at the base of Lower Anhydrite. Grochowice area, where reduced facies prevail in copper-bearing series, is characterized by the predomination of rich Cu-Ag mineralization proximaly to oxidized area. The western part of studied area is dominated by Cu-S type sulphides (chalcocite, digenite, covellite) whereas the eastern part is represented by Cu-Fe-S type minerals (bornite, chalcopyrite) with high galena and sphalerite concentrations. The spatial variability of sulphide mineralization with respect to the oxidized rocks indicates that Bytom Odrzański deposit extends in the north-west direction, continuing in the form of a copper belt along the eastern border of the oxidized area. An extensive deep exploration drilling program is implemented to verify the resource potential within predicted copper belt.


2001 ◽  
Vol 41 (1) ◽  
pp. 777
Author(s):  
B.F Ronalds

Oil and gas production is characterised by a truly international industry, and yet a unique local environment. Solutions developed elsewhere cannot always be imported directly for Australian use. For this reason alone, a strong local technology base is of value to the Australian oil and gas industry. Other benefits include the ability to provide high quality education and training for people entering, and already in, the industry.A case study is described where the Western Australian technology base is facilitating solutions to a specific challenge faced on the North West Shelf (NWS); namely, that the criteria for reliable development and operation of its offshore infrastructure for oil and gas production are more severe than other petroleum provinces, requiring new analytical tools to be developed.


1997 ◽  
Vol 37 (1) ◽  
pp. 560
Author(s):  
H.B. Goff

The traditional planning for decommissioning oil and gas projects has included the option to remove platforms from the project area leaving the site clear for other uses. However, decommissioning presents a number of opportunities for alternative uses for facilities that are relatively close to the coast and in developing areas.This paper examines the potential for the alternative use of facilities on the North West Shelf using the WMC operated Airlie Project as an example.Airlie Island presents an opportunity to conduct a number of research activities which would have the capability to enhance the understanding of the natural environment in the region and to gain better understanding of the long-term impact of the oil and gas industries impact on the natural environment. There is also the supplementary opportunity to conduct engineering research applicable to the oil and gas industry without the distraction and hazards of an operating field to interfere with the research projects. Allied to these possibilities is the potential to conduct research applicable to tourism and fishing related activities which are beginning to exert more pressure and the North West Shelf environment than has been the case in the recent past.In addition to the research opportunities, there exists the potential to manage Airlie Island as a support base for tourism activities on a commercial basis. The example presented could easily be applied to other projects nearing decommissioning.


2015 ◽  
Vol 55 (2) ◽  
pp. 475
Author(s):  
Adrien Bisset ◽  
Christopher Han

Given the recent increase of seismic data quality owing to improvements in seismic acquisition and processing, it is surprising to realise that the oil and gas industry is still using standard desktop screens with 256 colour resolution software displays, and for most of the seismic representations, using only three types of colour bars (peak-trough, grey scale or rainbow) for human interpretation, comprehension and decision making processes. Knowing that these displays show 0.000006% of the details captured in 32 bit resolution data, it is a wonder: is the oil and gas industry using the available data to its maximum potential to decrease the risk of drilling dry wells? Astronomy and medical imaging tackled these issues long ago and inspired by them, the oil and gas industry is able to use a 24 bit colour space for representing seismic data in a more appealing way. These innovative seismic data representations are called colour blends and are created using sources such as frequency decomposition products, angle stacks, edge attributes, 4D vintages or any other seismic attributes colour-coded with primary colours. Colour blends have not yet become mainstream due to availability of the tools. The cognitive cybernetics approach allows a more balanced input between data driven processes, interpreter skills and guidance, and has recently been made available for use with colour blends—a breakthrough in interpretation. This extended abstract shows recent advances in these two techniques and how they benefit to the geological and geophysical work based on a case study from the Australian and New Zealand sector.


Sign in / Sign up

Export Citation Format

Share Document