An effective workflow for updating 1D velocity model and event location in microseismic monitoring

2018 ◽  
Author(s):  
Xiao Tian ◽  
Jie Zhang ◽  
Wei Zhang
2018 ◽  
Vol 6 (3) ◽  
pp. SH39-SH48 ◽  
Author(s):  
Wojciech Gajek ◽  
Jacek Trojanowski ◽  
Michał Malinowski ◽  
Marek Jarosiński ◽  
Marko Riedel

A precise velocity model is necessary to obtain reliable locations of microseismic events, which provide information about the effectiveness of the hydraulic stimulation. Seismic anisotropy plays an important role in microseismic event location by imposing the dependency between wave velocities and its propagation direction. Building an anisotropic velocity model that accounts for that effect allows for more accurate location of microseismic events. We have used downhole microseismic records from a pilot hydraulic fracturing experiment in Lower-Paleozoic shale gas play in the Baltic Basin, Northern Poland, to obtain accurate microseismic events locations. We have developed a workflow for a vertical transverse isotropy velocity model construction when facing a challenging absence of horizontally polarized S-waves in perforation shot data, which carry information about Thomsen’s [Formula: see text] parameter and provide valuable constraints for locating microseismic events. We extract effective [Formula: see text], [Formula: see text] and [Formula: see text], [Formula: see text] for each layer from the P- and SV-wave arrivals of perforation shots, whereas the unresolved [Formula: see text] is retrieved afterward from the SH-SV-wave delay time of selected microseismic events. An inverted velocity model provides more reliable location of microseismic events, which then becomes an essential input for evaluating the hydraulic stimulation job effectiveness in the geomechanical context. We evaluate the influence of the preexisting fracture sets and obliquity between the borehole trajectory and principal horizontal stress direction on the hydraulic treatment performance. The fracturing fluid migrates to previously fractured zones, while the growth of the microseismic volume in consecutive stages is caused by increased penetration of the above-lying lithologic formations.


Geophysics ◽  
2017 ◽  
Vol 82 (2) ◽  
pp. KS13-KS25 ◽  
Author(s):  
M. Javad Khoshnavaz ◽  
Kit Chambers ◽  
Andrej Bóna ◽  
Milovan Urosevic

A common acquisition scenario in microseismic monitoring is the deployment of large areal receiver arrays at or near the surface. This recording geometry has the advantage of providing coverage of the source’s focal hemisphere as well as characterization of the arrival time moveout curve; however, the accuracy of many location techniques applied to these data sets depends on the accuracy of the depth velocity model provided prior to location. We have developed a simple oriented time-domain location technique so that full knowledge of the velocity model is not required a priori. The applicability of the technique is limited to horizontally layered models and also to models with dipping interfaces of small angles; however, this restriction is acceptable in many unconventional reservoirs. Implementation of the technique includes three steps: (1) smoothing of the observed time arrivals by fitting a hyperbolic moveout curve with a broad set of constraints, (2) updating and restricting the constraints using a local-slopes-based location workflow, and (3) estimation of the focal coordinates of passive sources using the updated constraints for the final least-squares fitting of the moveout curves. We have tested the performance of the proposed technique on several 2D examples and a 3D field data set. The results from synthetic examples suggest that, despite the assumption of the method that the arrival moveout can be modeled using a constant effective velocity, a reliable event location is achieved for layered models without considerable lateral heterogeneities. Our tests on the field data set find that the focal point coincides with a previously derived estimate of the source location. To assess the uncertainty of the proposed technique, bootstrap statistics was also used and applied to the field data set.


2010 ◽  
Vol 58 (2) ◽  
pp. 229-234 ◽  
Author(s):  
Jaromir Jansky ◽  
Vladimir Plicka ◽  
Leo Eisner

Geophysics ◽  
2011 ◽  
Vol 76 (6) ◽  
pp. WC17-WC25 ◽  
Author(s):  
Ulrich Zimmer

Microseismic monitoring has become an important part of borehole completions in tight-reservoir formations. Usually, clear objectives for a microseismic survey are set prior to the data acquisition. The possibility of meeting these objectives is determined by the acquisition geometry, the target formation, the completion schedule, and only to a lesser extent, by the data quality itself. Provided is a tutorial on the content and use of prejob modeling and design studies as a tool to anticipate viewing distances, data quantity, location accuracy, event magnitudes, achievable mapping distances, expected waveforms, and noise levels. In addition, potential challenges in meeting the survey objectives can be identified and solutions to these challenges can be devised prior to the survey. For downhole surveys, this involves the evaluation of different sensor array geometries and their impact on the location accuracy in different parts of the expected model. The sensitivity of the event location on the velocity model can be estimated using an initial log-based model. Recently, the detailed characterization of the event mechanism in form of a moment tensor inversion has received increased attention. The accuracy of the inverted moment tensor depends largely on the coverage of the focal sphere, i.e., the distribution of the sensors around the event location. Based on the sensor positions, areas with high- and low-quality moment tensor inversion results can be identified prior to data acquisition through the distribution of the condition number. Depending on the survey objectives and the given constraints, the microseismic design study might show that the survey objectives cannot be met. In this case, it is possible to evaluate alternate technologies, e.g., distributed temperature sensing (DTS), ahead of the project for their potential to meet these challenges.


Geophysics ◽  
2021 ◽  
pp. 1-92
Author(s):  
Xingda Jiang ◽  
Wei Zhang ◽  
Hui Yang ◽  
Chaofeng Zhao ◽  
Zixuan Wang

In downhole microseismic monitoring, the velocity model plays a vital role in accurate mapping of the hydraulic fracturing image. For velocity model uncertainties in the number of layers or interface depths, the conventional velocity calibration method has been shown to effectively locate the perforation shots; however, it introduces non-negligible location errors for microseismic events, especially for complex geological formations with inclinations. To improve the event location accuracy, we exploit the advantages of the reversible jump Markov chain Monte Carlo (rjMCMC) approach in generating different dimensions of velocity models and propose a transdimensional Bayesian simultaneous inversion framework for obtaining the effective velocity structure and event locations simultaneously. The transdimensional inversion changes the number of layers during the inversion process and selects the optimal interface depths and velocity values to improve the event location accuracy. The confidence intervals of the simultaneous inversion event locations estimated by Bayesian inference enable us to evaluate the location uncertainties in the horizontal and vertical directions. Two synthetic examples and a field test are presented to illustrate the performance of our methodology, and the event location accuracy is shown to be higher than that obtained using the conventional methods. With less dependence on prior information, the proposed transdimensional simultaneous inversion method can be used to obtain an effective velocity structure for facilitating highly accurate hydraulic fracturing mapping.


Sensors ◽  
2020 ◽  
Vol 20 (2) ◽  
pp. 574 ◽  
Author(s):  
Pingan Peng ◽  
Yuanjian Jiang ◽  
Liguan Wang ◽  
Zhengxiang He

The velocity model is a key factor that affects the accuracy of microseismic event location around tunnels. In this paper, we consider the effect of the empty area on the microseismic event location and present a 3D heterogeneous velocity model for excavated tunnels. The grid-based heterogeneous velocity model can describe a 3D arbitrarily complex velocity model, where the microseismic monitoring areas are divided into many blocks. The residual between the theoretical arrival time calculated by the fast marching method (FMM) and the observed arrival time is used to identify the block with the smallest residual. Particle swarm optimization (PSO) is used to improve the location accuracy in this block. Synthetic tests show that the accuracy of the microseismic event location based on the heterogeneous velocity model was higher than that based on the single velocity model, independent of whether an arrival time error was considered. We used the heterogeneous velocity model to locate 7 blasting events and 44 microseismic events with a good waveform quality in the Qinling No. 4 tunnel of the Yinhanjiwei project from 6 June 2017 to 13 June 2017 and compared the location results of the heterogeneous-velocity model with those of the single-velocity model. The results of this case study show that the events located by the heterogeneous velocity model were concentrated around the working face, which matched the actual conditions of the project, while the events located by the single-velocity model were scattered and far from the working face.


Sign in / Sign up

Export Citation Format

Share Document