Constructing the Resistivity-to-Sediment-Type Transform for the Interpretation of Airborne EM Data

Geophysics ◽  
2021 ◽  
pp. 1-75
Author(s):  
Noah Dewar ◽  
Rosemary Knight

A novel Markov Chain Monte Carlo (MCMC) based methodology was developed for the transformation of resistivity, derived from airborne electromagnetic (AEM) data, into sediment type. This methodology was developed and tested using AEM data and well sediment type and resistivity logs from Butte and Glenn Counties in the Californian Central Valley. Our methodology accounts for the spatially varying sensitivity of the AEM method by constructing different transforms separated based on the sensitivity of the AEM method. The large spatial separation that typically exists between the AEM data and the wells with sediment type logs was avoided by planning the acquisition of AEM data so as to fly as close as possible to the well locations. We had 55 locations with sediment type logs and AEM data separated by 100 m, determined to be the maximum acceptable separation distance. Differences in vertical resolution between the AEM method and the sediment type logs were addressed by modeling the physics of the AEM measurement, allowing for a comparison of field and AEM data generated during the MCMC process. The influence of saturation state was captured by creating one set of transforms for the region above the top of the saturated zone and another for below. Using the set of transforms developed at the 55 locations, an inverse distance weighting scheme that included a well quality ranking was used to construct a set of 12 (six sensitivity bins, and two saturation states) resistivity-to-sediment-type transforms at every AEM data location. These represent a set of transforms that accommodate the variation in AEM sensitivity and are independent of the inversion used to retrieve the resistivity model. These transforms thus avoid two of the significant limitations common to resistivity-to-sediment-type transforms used to interpret AEM data.

Crystals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 675
Author(s):  
H. Nilanthi Padmini ◽  
Mojtaba Rajabi ◽  
Sergij V. Shiyanovskii ◽  
Oleg D. Lavrentovich

Spatially-varying director fields have become an important part of research and development in liquid crystals. Characterization of the anchoring strength associated with a spatially-varying director is difficult, since the methods developed for a uniform alignment are seldom applicable. Here we characterize the strength of azimuthal surface anchoring produced by the photoalignment technique based on plasmonic metamsaks. The measurements used photopatterned arrays of topological point defects of strength +1 and −1 in thin layers of a nematic liquid crystal. The integer-strength defects split into pairs of half-integer defects with lower elastic energy. The separation distance between the split pair is limited by the azimuthal surface anchoring, which allows one to determine the strength of the latter. The strength of the azimuthal anchoring is proportional to the UV exposure time during the photoalignment of the azobenzene layer.


2014 ◽  
Vol 2 (3) ◽  
pp. SH67-SH77 ◽  
Author(s):  
Lars Ole Løseth ◽  
Torgeir Wiik ◽  
Per Atle Olsen ◽  
Jan Ove Hansen

The discovery of Skrugard in 2011 was a significant milestone for hydrocarbon exploration in the Barents Sea. The result was a positive confirmation of the play model, prospect evaluation, and the seismic hydrocarbon indicators in the area. In addition, the well result was encouraging for the CSEM interpretation and analysis that had been performed. Prior to drilling the 7220/8-1 well, EM resistivity images of the subsurface across the prospect had been obtained along with estimates of hydrocarbon saturation at the well position. The resistivity distribution was derived from extensive analysis of the multiclient CSEM data from 2008. The analysis was based on joint interpretation of seismic structures and optimal resistivity models from the CSEM data. The seismic structure was furthermore used to constrain the resistivity anomaly to the Skrugard reservoir. Scenario testing was then done to assess potential alternative models that could explain the CSEM data in addition to extract the most likely reservoir resistivity. Estimates of hydrocarbon saturation followed from using petrophysical parameters from nearby wells and knowledge of the area, combined with the most likely resistivity model from CSEM. Our results from the prewell study were compared to the postwell resistivity logs, for horizontal and vertical resistivity. We found a very good match between the estimated CSEM resistivities at the well location and the corresponding well resistivities. Thus, our results confirmed the ability of CSEM to predict hydrocarbon saturation. In addition, the work demonstrated limitations in the CSEM data analysis tools as well as sensitivity to acquisition parameters and measurement accuracy. The work has led to more CSEM data acquisition in the area and continued effort in development of our tools for data acquisition and analysis.


2011 ◽  
Vol 700 ◽  
pp. 129-132 ◽  
Author(s):  
Cosmin Laslau ◽  
David E. Williams ◽  
Bryon E. Wright ◽  
Jadranka Travas Sejdic

We discuss experimental issues associated with a novel operating mode of scanning ion conductance microscopy (SICM). This mode characterizes the ion fluxes that emanate from conducting polymers (CPs) as they actuate, important for understanding CP applications ranging from artificial muscles to micropumps. The CP studied is a thin film of poly (3,4-ethylenedioxythiophene) (PEDOT) actuated out of plane. We outline the design principles underpinning our CP ion flux measurements and discuss experimental complications that arose - most notably a baseline current that may be attributable to a spatially varying CP oxidation state. We discuss the dependence of this baseline ion flux current on the separation distance between SICM tip and CP film, substrate type and substrate area.


2015 ◽  
Vol 24 (5) ◽  
pp. 640 ◽  
Author(s):  
Glenn Newnham ◽  
Raphaele Blanchi ◽  
Kimberley Opie ◽  
Justin Leonard ◽  
Anders Siggins

Models of radiant heat flux (RHF) are critical for understanding wildfire behaviour and the effect a fire may have on homes and people. Various models have been presented in the literature for wildfire RHF, many being based on the Stephan–Boltzmann equation for radiative heat transfer. Most models simplify the fire and receiver interaction by considering a single fuel type at a given separation distance from a receiving point (e.g. on a building requiring protection). However, wildfire is an inherently spatial phenomenon, in that a fire may progress across the landscape towards a building across complex terrain and through spatially varying fuel types. This spatial variation influences the fire behaviour as well as the level of RHF incident on the building. In this study, we present methods for incorporating spatially varying topography and fuels into existing RHF modelling equations. In this way, we achieve a time-dependent profile of the RHF incident on homes, while accounting for attenuation due to fuels and topography that lie between the building and the fire front. The model is applied to the prediction of damage in a fire that occurred in South Australia in 2005. Although only coarse spatial information was available for determining the spatial distribution of fuels, modelled RHF was a significant indicator of house damage. Attenuation due to vegetation between homes and the fire was shown to reduce the modelled RHF exposure of homes. However, this was not shown to increase the significance of predicted house damage in the case of this fire event.


2014 ◽  
Vol 17 (02) ◽  
pp. 141-151 ◽  
Author(s):  
Philip C. Iheanacho

Summary The estimation of hydrocarbon pore volume (HCPV) from resistivity logs can be quite troublesome in some complex heterogeneous reservoirs. Most water-saturation/formation-resistivity models that work well for some reservoirs give unreliable results for others. No single model works for all types of reservoir scenarios. This paper presents the theory of formation resistivity in porous media. The paper develops the theory from the parallel-resistivity model and then extends it for the series-resistivity model. When applied for clean sand, the theory derives Archie equations from the first principle. The derivations show that both porosity exponent and saturation exponent are of the same origin and should have the same name. A better name for both parameters should be the tortuosity exponent of a component with respect to its fraction in a control volume. It is also advantageous to treat as a single parameter rather than two separate parameters. In addition, this theory derives new shaly-sand models for estimating HCPV. These new shaly-sand models can be used for different types of shale distribution by adjusting the value of a single parameter in the models. The formation-resistivity theory is also used to derive formation-resistivity models for conductive rock-matrix reservoirs and dual-triple-porosity reservoirs. A new equation for calculating the composite-porosity exponent is also developed. Field data are used to validate this work. The theory, when applied for each scenario, derives formation-resistivity models for estimating the reliable HCPV of different reservoir scenarios and types. Moreover, the strength of this theory is its ability to generate models that closely resemble models that have proved to work well for the reservoir cases for which they were developed. Although this work does not test the theory for the cases of tight-sand, shale-gas, and other unconventional reservoirs because of the unavailability of such data, the author is of the opinion that the theory can easily be extended for such reservoirs if the necessary data are available.


2019 ◽  
Vol 62 (3) ◽  
pp. 745-757 ◽  
Author(s):  
Jessica M. Wess ◽  
Joshua G. W. Bernstein

PurposeFor listeners with single-sided deafness, a cochlear implant (CI) can improve speech understanding by giving the listener access to the ear with the better target-to-masker ratio (TMR; head shadow) or by providing interaural difference cues to facilitate the perceptual separation of concurrent talkers (squelch). CI simulations presented to listeners with normal hearing examined how these benefits could be affected by interaural differences in loudness growth in a speech-on-speech masking task.MethodExperiment 1 examined a target–masker spatial configuration where the vocoded ear had a poorer TMR than the nonvocoded ear. Experiment 2 examined the reverse configuration. Generic head-related transfer functions simulated free-field listening. Compression or expansion was applied independently to each vocoder channel (power-law exponents: 0.25, 0.5, 1, 1.5, or 2).ResultsCompression reduced the benefit provided by the vocoder ear in both experiments. There was some evidence that expansion increased squelch in Experiment 1 but reduced the benefit in Experiment 2 where the vocoder ear provided a combination of head-shadow and squelch benefits.ConclusionsThe effects of compression and expansion are interpreted in terms of envelope distortion and changes in the vocoded-ear TMR (for head shadow) or changes in perceived target–masker spatial separation (for squelch). The compression parameter is a candidate for clinical optimization to improve single-sided deafness CI outcomes.


Author(s):  
Ricardo Sánchez-Murillo

This study presents a hydrogeochemical analysis of spring responses (2013-2017) in the tropical mountainous region of the Central Valley of Costa Rica. The isotopic distribution of δ18O and δ2H in rainfall resulted in a highly significant meteoric water line: δ2H = 7.93×δ18O + 10.37 (r2=0.97). Rainfall isotope composition exhibited a strong dependent seasonality. The isotopic variation (δ18O) of two springs within the Barva aquifer was simulated using the FlowPC program to determine mean transit times (MTTs). Exponential-piston and dispersion distribution functions provided the best-fit to the observed isotopic composition at Flores and Sacramento springs, respectively. MTTs corresponded to 1.23±0.03 (Sacramento) and 1.42±0.04 (Flores) years. The greater MTT was represented by a homogeneous geochemical composition at Flores, whereas the smaller MTT at Sacramento is reflected in a more variable geochemical response. The results may be used to enhance modelling efforts in central Costa Rica, whereby scarcity of long-term data limits water resources management plans.


Sign in / Sign up

Export Citation Format

Share Document