Attribute expression of fault-controlled karst — Fort Worth Basin, Texas: A tutorial

2014 ◽  
Vol 2 (3) ◽  
pp. SF91-SF110 ◽  
Author(s):  
Jie Qi ◽  
Bo Zhang ◽  
Huailai Zhou ◽  
Kurt Marfurt

Much of seismic interpretation is based on pattern recognition, such that experienced interpreters are able to extract subtle geologic features that a new interpreter may easily overlook. Seismic pattern recognition is based on the identification of changes in (1) amplitude, (2) phase, (3) frequency, (4) dip, (5) continuity, and (6) reflector configuration. Seismic attributes, which providing quantitative measures that can be subsequently used in risk analysis and data mining, partially automate the pattern recognition problem by extracting key statistical, geometric, or kinematic components of the 3D seismic volume. Early attribute analysis began with recognition of bright spots and quickly moved into the mapping of folds, faults, and channels. Although a novice interpreter may quickly recognize faults and channels on attribute time slices, karst terrains provide more complex patterns. We sought to instruct the attribute expression of a karst terrain in the western part of the Fort Worth Basin, Texas, United States of America. Karst provides a specific expression on almost every attribute. Specifically, karst in the Fort Worth Basin Ellenburger Group exhibits strong dip, negative curvature, low coherence, and a shift to lower frequencies. Geomorphologically, the inferred karst geometries seen in our study areas indicate strong structural control, whereby large-scale karst collapse is associated with faults and where karst lineaments are aligned perpendicularly to faults associated with reflector rotation anomalies.

Geophysics ◽  
2008 ◽  
Vol 73 (2) ◽  
pp. P1-P7 ◽  
Author(s):  
Gabriel Perez ◽  
Kurt J. Marfurt

Accurate seismic imaging requires that a geologic feature be located at the same lateral and vertical position in images obtained by 3D prestack migration from different data bins, such as common-offset or common-angle subvolumes. Misalignment of those images degrades the quality of the stack. For dipping reflectors and lateral discontinuities, imperfect imaging causes both lateral and vertical misalignment. In current practice, the vertical component of the misalignment is used to estimate updates in velocity and other imaging parameters; the lateral component is largely ignored. We show that recent developments in seismic-attribute analysis allow us to examine the lateral misalignment of prestack volumes with similar resolution to that achieved in examining vertical moveout. To measure lateral moveout, we pick maxima from local 2D crosscorrelations computed between slices from 3D attribute volumes. We then use these measurements to correct for the lateral misalignment by applying a warping procedure to the corresponding slices in the prestack migrated seismic data. We apply our technique to a 3D land survey acquired over the Fort Worth basin in Texas, and obtain subtle, but potentially important, improvements in the quality and resolution of the stack as well as in the attribute images computed from the corrected data.


Geophysics ◽  
1997 ◽  
Vol 62 (6) ◽  
pp. 1996-1998
Author(s):  
Miodrag M. Roksandić

The paper deals with the results of a multidisciplinary study of the Bend Conglomerate (Middle Pennsylvanian fluvio‐deltaic clastics) in a portion of Boonsville gas field in the Fort Worth Basin of North‐Central Texas, especially with those related to the Caddo sequence, at the top of the Bend Conglomerate. The purpose of the study was “to determine how modern geophysical, geological, and engineering techniques could be combined to understand the mechanisms by which fluvio‐deltaic depositional processes create reservoir compartmentalization in a low‐ to moderate‐accommodation basin.” According to Hardage et al. (1996), complexly arranged key chronostratigraphic surfaces are major controls on compartmentalization and architecture of reservoirs. These key chronostratigraphic surfaces are flooding surfaces, maximum flooding surfaces, and erosion surfaces.


2018 ◽  
Author(s):  
Ohood Alsalem ◽  
◽  
Majie Fan ◽  
Asish Basu ◽  
Tamara L. Adams

Author(s):  
Ekaterina Bourova-Flin ◽  
Samira Derakhshan ◽  
Afsaneh Goudarzi ◽  
Tao Wang ◽  
Anne-Laure Vitte ◽  
...  

Abstract Background Large-scale genetic and epigenetic deregulations enable cancer cells to ectopically activate tissue-specific expression programmes. A specifically designed strategy was applied to oral squamous cell carcinomas (OSCC) in order to detect ectopic gene activations and develop a prognostic stratification test. Methods A dedicated original prognosis biomarker discovery approach was implemented using genome-wide transcriptomic data of OSCC, including training and validation cohorts. Abnormal expressions of silent genes were systematically detected, correlated with survival probabilities and evaluated as predictive biomarkers. The resulting stratification test was confirmed in an independent cohort using immunohistochemistry. Results A specific gene expression signature, including a combination of three genes, AREG, CCNA1 and DDX20, was found associated with high-risk OSCC in univariate and multivariate analyses. It was translated into an immunohistochemistry-based test, which successfully stratified patients of our own independent cohort. Discussion The exploration of the whole gene expression profile characterising aggressive OSCC tumours highlights their enhanced proliferative and poorly differentiated intrinsic nature. Experimental targeting of CCNA1 in OSCC cells is associated with a shift of transcriptomic signature towards the less aggressive form of OSCC, suggesting that CCNA1 could be a good target for therapeutic approaches.


2007 ◽  
Vol 26 (2) ◽  
pp. 176-179
Author(s):  
Thomas D. Bowman ◽  
Wayne “Woody” Woodside ◽  
Steve Culpepper

Sign in / Sign up

Export Citation Format

Share Document