scholarly journals A Joint MLE Approach to Large-Scale Structured Latent Attribute Analysis

Author(s):  
Yuqi Gu ◽  
Gongjun Xu
2020 ◽  
Author(s):  
Naiara Fernandez ◽  
Oliver Duffy ◽  
Frank Peel ◽  
Michael Hudec ◽  
Gillian Apps ◽  
...  

<p>In salt-detached gravity-gliding/spreading systems the detachment geometry is a key control on the downslope mobility of the supra-canopy (supra-salt) sequence. As supra-canopy minibasins translate downslope, they also subside into salt. If the base of salt has high relief, minibasins may weld and stop from further free translation downslope. The degree of minibasin obstruction controls both the kinematics of the individual basins, and the more regional pattern of supra-canopy strain. Here, we use regional 3D seismic data to examine a salt-stock canopy in the northern Gulf of Mexico slope, in an area where supra-canopy minibasins subsided vertically and translated downslope above a complex base-of-salt with high relief.</p><p>At a regional scale, we distinguish two structural domains in the study area: a highly obstructed or locked domain and a highly mobile domain. Large-scale translation of the supra-canopy sequence is recorded in the mobile domain by two different structures (a far-travelled minibasin and a ramp syncline basin). Although identifying the deformation area between the two regional domains is challenging due to its diffusive nature, characterizing domains according to base-of-salt geometry and supra-canopy minibasin configuration is helpful in identifying structural domains that may share similar subsidence and downslope translation histories.</p><p>At minibasin scale, minibasins that become obstructed modify the local strain field, typically developing a zone of shortening immediately updip of it and an extensional breakaway zone immediately downdip. Seismic attribute analysis performed in a cluster of minibasins in the study area illustrates a long-lived sediment transport system affected by the complex strain patterns associated with minibasin obstruction. At an early stage, a submarine channel system is captured and subsequently rerouted in response to the updip shortening associated with minibasin obstruction. At a later stage, a mass-transport complex (MTC) is steered by the topographic barrier created by the downdip extensional breakaway associated with minibasin obstruction.</p><p>Our work illustrates how salt-tectonic processes related to minibasin obstruction can affect the canopy dynamics at both regional and minibasin scale. Furthermore, we show that minibasin obstruction processes can modify the seafloor and subsequently control deepwater sediment dispersal, which, ultimately can affect hydrocarbon reservoir distribution on salt-influenced slopes</p>


2014 ◽  
Vol 2 (3) ◽  
pp. SF91-SF110 ◽  
Author(s):  
Jie Qi ◽  
Bo Zhang ◽  
Huailai Zhou ◽  
Kurt Marfurt

Much of seismic interpretation is based on pattern recognition, such that experienced interpreters are able to extract subtle geologic features that a new interpreter may easily overlook. Seismic pattern recognition is based on the identification of changes in (1) amplitude, (2) phase, (3) frequency, (4) dip, (5) continuity, and (6) reflector configuration. Seismic attributes, which providing quantitative measures that can be subsequently used in risk analysis and data mining, partially automate the pattern recognition problem by extracting key statistical, geometric, or kinematic components of the 3D seismic volume. Early attribute analysis began with recognition of bright spots and quickly moved into the mapping of folds, faults, and channels. Although a novice interpreter may quickly recognize faults and channels on attribute time slices, karst terrains provide more complex patterns. We sought to instruct the attribute expression of a karst terrain in the western part of the Fort Worth Basin, Texas, United States of America. Karst provides a specific expression on almost every attribute. Specifically, karst in the Fort Worth Basin Ellenburger Group exhibits strong dip, negative curvature, low coherence, and a shift to lower frequencies. Geomorphologically, the inferred karst geometries seen in our study areas indicate strong structural control, whereby large-scale karst collapse is associated with faults and where karst lineaments are aligned perpendicularly to faults associated with reflector rotation anomalies.


Geophysics ◽  
2002 ◽  
Vol 67 (6) ◽  
pp. 2012-2041 ◽  
Author(s):  
N. C. Dutta

The subject of seismic detection of abnormally high‐pressured formations has received a great deal of attention in exploration and production geophysics because of increasing exploration and production activities in frontier areas (such as the deepwater) and a need to lower cost without compromising safety and environment, and manage risk and uncertainty associated with very expensive drilling. The purpose of this review is to capture the “best practice” in this highly specialized discipline and document it. Pressure prediction from seismic data is based on fundamentals of science, especially those of rock physics and seismic attribute analysis. Nonetheless, since the first seismic application in the 1960s, practitioners of the technology have relied increasingly on empiricism, and the fundamental limitations of the tools applied to detect such hazardous formations were lost. The most successful approach to seismic pressure prediction is one that combines a good understanding of rock properties of subsurface formations with the best practice for seismic velocity analysis appropriate for rock physics applications, not for stacking purposes. With the step change that the industry has seen in the application of the modern digital computing technology to solving large‐scale exploration and production problems using seismic data, the detection of pressured formations can now be made with more confidence and better resolution. The challenge of the future is to break the communication and the “language barrier” that still exists between the seismologists, the rock physicists, and the drilling community.


2016 ◽  
Author(s):  
Chen Maoshan ◽  
Hao Yanguo ◽  
Dai Lihua ◽  
Li Hong ◽  
Wang Fei

1999 ◽  
Vol 173 ◽  
pp. 243-248
Author(s):  
D. Kubáček ◽  
A. Galád ◽  
A. Pravda

AbstractUnusual short-period comet 29P/Schwassmann-Wachmann 1 inspired many observers to explain its unpredictable outbursts. In this paper large scale structures and features from the inner part of the coma in time periods around outbursts are studied. CCD images were taken at Whipple Observatory, Mt. Hopkins, in 1989 and at Astronomical Observatory, Modra, from 1995 to 1998. Photographic plates of the comet were taken at Harvard College Observatory, Oak Ridge, from 1974 to 1982. The latter were digitized at first to apply the same techniques of image processing for optimizing the visibility of features in the coma during outbursts. Outbursts and coma structures show various shapes.


1994 ◽  
Vol 144 ◽  
pp. 29-33
Author(s):  
P. Ambrož

AbstractThe large-scale coronal structures observed during the sporadically visible solar eclipses were compared with the numerically extrapolated field-line structures of coronal magnetic field. A characteristic relationship between the observed structures of coronal plasma and the magnetic field line configurations was determined. The long-term evolution of large scale coronal structures inferred from photospheric magnetic observations in the course of 11- and 22-year solar cycles is described.Some known parameters, such as the source surface radius, or coronal rotation rate are discussed and actually interpreted. A relation between the large-scale photospheric magnetic field evolution and the coronal structure rearrangement is demonstrated.


2000 ◽  
Vol 179 ◽  
pp. 205-208
Author(s):  
Pavel Ambrož ◽  
Alfred Schroll

AbstractPrecise measurements of heliographic position of solar filaments were used for determination of the proper motion of solar filaments on the time-scale of days. The filaments have a tendency to make a shaking or waving of the external structure and to make a general movement of whole filament body, coinciding with the transport of the magnetic flux in the photosphere. The velocity scatter of individual measured points is about one order higher than the accuracy of measurements.


Author(s):  
Simon Thomas

Trends in the technology development of very large scale integrated circuits (VLSI) have been in the direction of higher density of components with smaller dimensions. The scaling down of device dimensions has been not only laterally but also in depth. Such efforts in miniaturization bring with them new developments in materials and processing. Successful implementation of these efforts is, to a large extent, dependent on the proper understanding of the material properties, process technologies and reliability issues, through adequate analytical studies. The analytical instrumentation technology has, fortunately, kept pace with the basic requirements of devices with lateral dimensions in the micron/ submicron range and depths of the order of nonometers. Often, newer analytical techniques have emerged or the more conventional techniques have been adapted to meet the more stringent requirements. As such, a variety of analytical techniques are available today to aid an analyst in the efforts of VLSI process evaluation. Generally such analytical efforts are divided into the characterization of materials, evaluation of processing steps and the analysis of failures.


Author(s):  
V. C. Kannan ◽  
A. K. Singh ◽  
R. B. Irwin ◽  
S. Chittipeddi ◽  
F. D. Nkansah ◽  
...  

Titanium nitride (TiN) films have historically been used as diffusion barrier between silicon and aluminum, as an adhesion layer for tungsten deposition and as an interconnect material etc. Recently, the role of TiN films as contact barriers in very large scale silicon integrated circuits (VLSI) has been extensively studied. TiN films have resistivities on the order of 20μ Ω-cm which is much lower than that of titanium (nearly 66μ Ω-cm). Deposited TiN films show resistivities which vary from 20 to 100μ Ω-cm depending upon the type of deposition and process conditions. TiNx is known to have a NaCl type crystal structure for a wide range of compositions. Change in color from metallic luster to gold reflects the stabilization of the TiNx (FCC) phase over the close packed Ti(N) hexagonal phase. It was found that TiN (1:1) ideal composition with the FCC (NaCl-type) structure gives the best electrical property.


Author(s):  
J. Liu ◽  
N. D. Theodore ◽  
D. Adams ◽  
S. Russell ◽  
T. L. Alford ◽  
...  

Copper-based metallization has recently attracted extensive research because of its potential application in ultra-large-scale integration (ULSI) of semiconductor devices. The feasibility of copper metallization is, however, limited due to its thermal stability issues. In order to utilize copper in metallization systems diffusion barriers such as titanium nitride and other refractory materials, have been employed to enhance the thermal stability of copper. Titanium nitride layers can be formed by annealing Cu(Ti) alloy film evaporated on thermally grown SiO2 substrates in an ammonia ambient. We report here the microstructural evolution of Cu(Ti)/SiO2 layers during annealing in NH3 flowing ambient.The Cu(Ti) films used in this experiment were prepared by electron beam evaporation onto thermally grown SiO2 substrates. The nominal composition of the Cu(Ti) alloy was Cu73Ti27. Thermal treatments were conducted in NH3 flowing ambient for 30 minutes at temperatures ranging from 450°C to 650°C. Cross-section TEM specimens were prepared by the standard procedure.


Sign in / Sign up

Export Citation Format

Share Document