Reservoir properties prediction integrating controlled-source electromagnetic, prestack seismic, and well-log data using a rock-physics framework: Case study in the Hoop Area, Barents Sea, Norway

2017 ◽  
Vol 5 (2) ◽  
pp. SE43-SE60 ◽  
Author(s):  
Pedro Alvarez ◽  
Amanda Alvarez ◽  
Lucy MacGregor ◽  
Francisco Bolivar ◽  
Robert Keirstead ◽  
...  

We have developed an example from the Hoop Area of the Barents Sea showing a sequential quantitative integration approach to integrate seismic and controlled-source electromagnetic (CSEM) attributes using a rock-physics framework. The example illustrates a workflow to address the challenges of multiphysics and multiscale data integration for reservoir characterization purposes. A data set consisting of 2D GeoStreamer seismic and towed streamer electromagnetic data that were acquired concurrently in 2015 by PGS provide the surface geophysical measurements that we used. Two wells in the area — Wisting Central (7324/8-1) and Wisting Alternative (7324/7-1S) — provide calibration for the rock-physics modeling and the quantitative integrated analysis. In the first stage of the analysis, we invert prestack seismic and CSEM data separately for impedance and anisotropic resistivity, respectively. We then apply the multi-attribute rotation scheme (MARS) to estimate rock properties from seismic data. This analysis verified that the seismic data alone cannot distinguish between commercial and noncommercial hydrocarbon saturation. Therefore, in the final stage of the analysis, we invert the seismic and CSEM-derived properties within a rock-physics framework. The inclusion of the CSEM-derived resistivity information within the inversion approach allows for the separation of these two possible scenarios. Results reveal excellent correlation with known well outcomes. The integration of seismic, CSEM, and well data predicts very high hydrocarbon saturations at Wisting Central and no significant saturation at Wisting Alternative, consistent with the findings of each well. Two further wells were drilled in the area and used as blind tests in this case: The slightly lower saturation predicted at Hanssen (7324/7-2) is related to 3D effects in the CSEM data, but the positive outcome of the well is correctly predicted. At Bjaaland (7324/8-2), although the seismic indications are good, the integrated interpretation result predicts correctly that this well was unsuccessful.

Geophysics ◽  
2018 ◽  
Vol 83 (3) ◽  
pp. M25-M39 ◽  
Author(s):  
Mingliang Liu ◽  
Dario Grana

We have developed a new stochastic nonlinear inversion method for seismic reservoir characterization studies to jointly estimate elastic and petrophysical properties and to quantify their uncertainty. Our method aims to estimate multiple reservoir realizations of the entire set of reservoir properties, including seismic velocities, density, porosity, mineralogy, and saturation, by iteratively updating the initial ensemble of models based on the mismatch between their seismic response and the measured seismic data. The initial models are generated using geostatistical methods and the geophysical forward operators include rock-physics relations and a seismic forward model. The optimization is achieved using an iterative ensemble-based algorithm, namely, the ensemble smoother with multiple data assimilation, in which each iteration is based on a Bayesian updating step. The advantages of the proposed method are that it can be applied to nonlinear inverse problems and it can provide an ensemble of solutions from which we can quantify the uncertainty of the model properties of interest. To reduce the computational cost of the inversion, we perform the optimization in a lower dimensional data space reparameterized by singular value decomposition. The proposed methodology is validated on a synthetic case in which the set of petroelastic properties is recovered with satisfactory accuracy. Then, we applied the inversion method to a real seismic data set from the Norne field in the Norwegian Sea.


2021 ◽  
Author(s):  
S Al Naqbi ◽  
J Ahmed ◽  
J Vargas Rios ◽  
Y Utami ◽  
A Elila ◽  
...  

Abstract The Thamama group of reservoirs consist of porous carbonates laminated with tight carbonates, with pronounced lateral heterogeneities in porosity, permeability, and reservoir thickness. The main objective of our study was mapping variations and reservoir quality prediction away from well control. As the reservoirs were thin and beyond seismic resolution, it was vital that the facies and porosity be mapped in high resolution, with a high predictability, for successful placement of horizontal wells for future development of the field. We established a unified workflow of geostatistical inversion and rock physics to characterize the reservoirs. Geostatistical inversion was run in static models that were converted from depth to time domain. A robust two-way velocity model was built to map the depth grid and its zones on the time seismic data. This ensured correct placement of the predicted high-resolution elastic attributes in the depth static model. Rock physics modeling and Bayesian classification were used to convert the elastic properties into porosity and lithology (static rock-type (SRT)), which were validated in blind wells and used to rank the multiple realizations. In the geostatistical pre-stack inversion, the elastic property prediction was constrained by the seismic data and controlled by variograms, probability distributions and a guide model. The deterministic inversion was used as a guide or prior model and served as a laterally varying mean. Initially, unconstrained inversion was tested by keeping all wells as blind and the predictions were optimized by updating the input parameters. The stochastic inversion results were also frequency filtered in several frequency bands, to understand the impact of seismic data and variograms on the prediction. Finally, 30 wells were used as input, to generate 80 realizations of P-impedance, S-impedance, Vp/Vs, and density. After converting back to depth, 30 additional blind wells were used to validate the predicted porosity, with a high correlation of more than 0.8. The realizations were ranked based on the porosity predictability in blind wells combined with the pore volume histograms. Realizations with high predictability and close to the P10, P50 and P90 cases (of pore volume) were selected for further use. Based on the rock physics analysis, the predicted lithology classes were associated with the geological rock-types (SRT) for incorporation in the static model. The study presents an innovative approach to successfully integrate geostatistical inversion and rock physics with static modeling. This workflow will generate seismically constrained high-resolution reservoir properties for thin reservoirs, such as porosity and lithology, which are seamlessly mapped in the depth domain for optimized development of the field. It will also account for the uncertainties in the reservoir model through the generation of multiple equiprobable realizations or scenarios.


Author(s):  
A. Ogbamikhumi ◽  
T. Tralagba ◽  
E. E. Osagiede

Field ‘K’ is a mature field in the coastal swamp onshore Niger delta, which has been producing since 1960. As a huge producing field with some potential for further sustainable production, field monitoring is therefore important in the identification of areas of unproduced hydrocarbon. This can be achieved by comparing production data with the corresponding changes in acoustic impedance observed in the maps generated from base survey (initial 3D seismic) and monitor seismic survey (4D seismic) across the field. This will enable the 4D seismic data set to be used for mapping reservoir details such as advancing water front and un-swept zones. The availability of good quality onshore time-lapse seismic data for Field ‘K’ acquired in 1987 and 2002 provided the opportunity to evaluate the effect of changes in reservoir fluid saturations on time-lapse amplitudes. Rock physics modelling and fluid substitution studies on well logs were carried out, and acoustic impedance change in the reservoir was estimated to be in the range of 0.25% to about 8%. Changes in reservoir fluid saturations were confirmed with time-lapse amplitudes within the crest area of the reservoir structure where reservoir porosity is 0.25%. In this paper, we demonstrated the use of repeat Seismic to delineate swept zones and areas hit with water override in a producing onshore reservoir.


Geophysics ◽  
2018 ◽  
Vol 83 (4) ◽  
pp. M41-M48 ◽  
Author(s):  
Hongwei Liu ◽  
Mustafa Naser Al-Ali

The ideal approach for continuous reservoir monitoring allows generation of fast and accurate images to cope with the massive data sets acquired for such a task. Conventionally, rigorous depth-oriented velocity-estimation methods are performed to produce sufficiently accurate velocity models. Unlike the traditional way, the target-oriented imaging technology based on the common-focus point (CFP) theory can be an alternative for continuous reservoir monitoring. The solution is based on a robust data-driven iterative operator updating strategy without deriving a detailed velocity model. The same focusing operator is applied on successive 3D seismic data sets for the first time to generate efficient and accurate 4D target-oriented seismic stacked images from time-lapse field seismic data sets acquired in a [Formula: see text] injection project in Saudi Arabia. Using the focusing operator, target-oriented prestack angle domain common-image gathers (ADCIGs) could be derived to perform amplitude-versus-angle analysis. To preserve the amplitude information in the ADCIGs, an amplitude-balancing factor is applied by embedding a synthetic data set using the real acquisition geometry to remove the geometry imprint artifact. Applying the CFP-based target-oriented imaging to time-lapse data sets revealed changes at the reservoir level in the poststack and prestack time-lapse signals, which is consistent with the [Formula: see text] injection history and rock physics.


2021 ◽  
Vol 40 (10) ◽  
pp. 751-758
Author(s):  
Fabien Allo ◽  
Jean-Philippe Coulon ◽  
Jean-Luc Formento ◽  
Romain Reboul ◽  
Laure Capar ◽  
...  

Deep neural networks (DNNs) have the potential to streamline the integration of seismic data for reservoir characterization by providing estimates of rock properties that are directly interpretable by geologists and reservoir engineers instead of elastic attributes like most standard seismic inversion methods. However, they have yet to be applied widely in the energy industry because training DNNs requires a large amount of labeled data that is rarely available. Training set augmentation, routinely used in other scientific fields such as image recognition, can address this issue and open the door to DNNs for geophysical applications. Although this approach has been explored in the past, creating realistic synthetic well and seismic data representative of the variable geology of a reservoir remains challenging. Recently introduced theory-guided techniques can help achieve this goal. A key step in these hybrid techniques is the use of theoretical rock-physics models to derive elastic pseudologs from variations of existing petrophysical logs. Rock-physics theories are already commonly relied on to generalize and extrapolate the relationship between rock and elastic properties. Therefore, they are a useful tool to generate a large catalog of alternative pseudologs representing realistic geologic variations away from the existing well locations. While not directly driven by rock physics, neural networks trained on such synthetic catalogs extract the intrinsic rock-physics relationships and are therefore capable of directly estimating rock properties from seismic amplitudes. Neural networks trained on purely synthetic data are applied to a set of 2D poststack seismic lines to characterize a geothermal reservoir located in the Dogger Formation northeast of Paris, France. The goal of the study is to determine the extent of porous and permeable layers encountered at existing geothermal wells and ultimately guide the location and design of future geothermal wells in the area.


Geophysics ◽  
2018 ◽  
Vol 83 (3) ◽  
pp. MR187-MR198 ◽  
Author(s):  
Yi Shen ◽  
Jack Dvorkin ◽  
Yunyue Li

Our goal is to accurately estimate attenuation from seismic data using model regularization in the seismic inversion workflow. One way to achieve this goal is by finding an analytical relation linking [Formula: see text] to [Formula: see text]. We derive an approximate closed-form solution relating [Formula: see text] to [Formula: see text] using rock-physics modeling. This relation is tested on well data from a clean clastic gas reservoir, of which the [Formula: see text] values are computed from the log data. Next, we create a 2D synthetic gas-reservoir section populated with [Formula: see text] and [Formula: see text] and generate respective synthetic seismograms. Now, the goal is to invert this synthetic seismic section for [Formula: see text]. If we use standard seismic inversion based solely on seismic data, the inverted attenuation model has low resolution and incorrect positioning, and it is distorted. However, adding our relation between velocity and attenuation, we obtain an attenuation model very close to the original section. This method is tested on a 2D field seismic data set from Gulf of Mexico. The resulting [Formula: see text] model matches the geologic shape of an absorption body interpreted from the seismic section. Using this [Formula: see text] model in seismic migration, we make the seismic events below the high-absorption layer clearly visible, with improved frequency content and coherency of the events.


2017 ◽  
Vol 25 (03) ◽  
pp. 1750022
Author(s):  
Xiuwei Yang ◽  
Peimin Zhu

Acoustic impedance (AI) from seismic inversion can indicate rock properties and can be used, when combined with rock physics, to predict reservoir parameters, such as porosity. Solutions to seismic inversion problem are almost nonunique due to the limited bandwidth of seismic data. Additional constraints from well log data and geology are needed to arrive at a reasonable solution. In this paper, sedimentary facies is used to reduce the uncertainty in inversion and rock physics modeling; the results not only agree with seismic data, but also conform to geology. A reservoir prediction method, which incorporates seismic data, well logs, rock physics and sedimentary facies, is proposed. AI was first derived by constrained sparse spike inversion (CSSI) using a sedimentary facies dependent low-frequency model, and then was transformed to reservoir parameters by sequential simulation, statistical rock physics and [Formula: see text]-model. Two numerical experiments using synthetic model and real data indicated that the sedimentary facies information may help to obtain a more reasonable prediction.


2013 ◽  
Author(s):  
Roberto Suarez-Rivera ◽  
Shanna Herring ◽  
David Handwerger ◽  
Sonia Marino ◽  
John Petriello ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document