Investigation of seismic attributes, depositional environments, and hydrocarbon sweet-spot distribution in the Serbin field, Taylor Formation, Southeast Texas

2019 ◽  
Vol 7 (1) ◽  
pp. T49-T66
Author(s):  
Osareni C. Ogiesoba ◽  
William A. Ambrose ◽  
Robert G. Loucks

We have conducted seismic-attribute analysis at the Serbin field — in an area straddling Lee, Fayette, and Bastrop Counties and covering approximately [Formula: see text] (approximately [Formula: see text]) — using new, reprocessed, 3D seismic data to provide additional understanding of depositional environments and better predict the distribution of hydrocarbon sweet spots. We converted the 3D seismic volume into a log-lithology volume and integrated core data to examine the distribution of lithology and interpret depositional environments. By conducting multiattribute analysis, we predicted resistivity (deep-induction log) volume and generated a resistivity map to identify hydrocarbon sweet spots. Our results show that reservoir sandstones in the Serbin field are storm-dominated, shelf-sand deposits. Although individual sandstone beds are lenticular and discontinuous, they collectively constitute a sheet-like geometry, trending northeast to southwest. On the basis of resistivity maps and rock property versus seismic-amplitude crossplots, we differentiated reservoirs in the lower Taylor Formation into two zones: (1) a northwest, high-resistivity, high-acoustic impedance zone and (2) a southeast, low-resistivity, low-acoustic impedance zone. The results also indicated that hydrocarbon sweet spots in the Serbin field are characterized by high resistivity and high impedance. Furthermore, the log-lithology method, although fast and effective, is limited because it cannot take into account sandstone zones having low acoustic impedance.

2021 ◽  
pp. 99-108
Author(s):  
Sergiy VYZHVA ◽  
Ihor SOLOVYOV ◽  
Ihor МYKHALEVYCH ◽  
Viktoriia KRUHLYK ◽  
Georgiy LISNY

Based on the results of numerous seismic studies carried out in the areas and fields of the Dnipro-Donets depression, the strategy to identify hydrocarbon traps in this region has been developed taking into account modern requirements for prospecting and exploration of gas and oil fields. The studies are designed to determine the favorable zones of hydrocarbon accumulations based on the analysis of the structural-tectonic model. A necessary element for solving such a problem is to aaply direct indicators of hydrocarbons to predict traps of the structural, lithological or combined type. It was determined that an effective approach to identify hydrocarbon traps in the region is attribute analysis employing seismic attributes such as seismic envelope, acoustic impedance or relative acoustic impedance. In most cases of practical importance, the analysis of the distribution of the values of these attributes turned out to be sufficient for performing the geological tasks. It is given an example of extracting additional useful information on the spatial distribution of hydrocarbon traps from volumetric images obtained from seismograms of common sources with a limited range of ray angles inclinations. To analyze the distributions of seismic attribute values, it is recommended to use the Geobody technology for detecting geological bodies as the most effective when using volumetric seismic data. The distributions of various properties of rocks, including zones of increased porosity or zones of presence of hydrocarbons are determined depending on the types of seismic attributes used in the analysis,. The use of several seismic attributes makes it possible to identify geological bodies saturated with hydrocarbons with increased porosity and the like. The paper provides examples of hydrocarbon traps recognition in the areas and fields of the Dnipro-Donets depression practically proved by wells. A generalization on the distribution of promising hydrocarbon areas on the Northern flank of the Dnipro-Donets depression and the relationship of this distribution with the identified structural elements of the geological subsoil is made. 


1994 ◽  
Vol 34 (1) ◽  
pp. 513
Author(s):  
P.V.Hinton P.V.Hinton ◽  
M.G.Cousins ◽  
P.E.Symes

The central fields area of the Gippsland Basin, Australia, includes the Halibut, Cobia, Fortescue, and Mackerel oil fields. These large fields are mature with about 80% of the reserves produced. During 1991 and 1992 a multidisciplinary study, integrating the latest technology, was completed to help optimise the depletion of the remaining significant reserves.A grid of 4500 km of high resolution 3D seismic data covering 191 square kilometres allowed the identification of subtle structural traps as well as better definition of sandstone truncation edges which represent the ultimate drainage points. In addition, the latest techniques in seismic attribute analysis provided insight into depositional environments, seal potential and facies distribution. Sequence stratigraphic concepts were used in combination with seismic data to build complex multi million cell 3D geological models. Reservoir simulation models were then constructed to history match past production and to predict future field performance. Facility studies were also undertaken to optimise depletion strategies.The Central Fields Depletion Study has resulted in recommendations to further develop the fields with about 80 work-overs, 50 infill wells, reduction in separator pressures, and gas lift and water handling facility upgrades. These activities are expected to increase ultimate reserves and production. Some of the recommendations have been implemented with initial results of additional drilling on Mackerel increasing platform production from 22,000 BOPD to over 50,000 BOPD. An ongoing program of additional drilling from the four platforms is expected to continue for several years.


2021 ◽  
pp. 1-17
Author(s):  
Karen M. Leopoldino Oliveira ◽  
Heather Bedle ◽  
Karelia La Marca Molina

We analyzed a 1991 3D seismic data located offshore Florida and applied seismic attribute analysis to identify geological structures. Initially, the seismic data appears to have a high signal-to-noise-ratio, being of an older vintage of quality, and appears to reveal variable amplitude subparallel horizons. Additional geophysical analysis, including seismic attribute analysis, reveals that the data has excessive denoising, and that the continuous features are actually a network of polygonal faults. The polygonal faults were identified in two tiers using variance, curvature, dip magnitude, and dip azimuth seismic attributes. Inline and crossline sections show continuous reflectors with a noisy appearance, where the polygonal faults are suppressed. In the variance time slices, the polygonal fault system forms a complex network that is not clearly imaged in the seismic amplitude data. The patterns of polygonal fault systems in this legacy dataset are compared to more recently acquired 3D seismic data from Australia and New Zealand. It is relevant to emphasize the importance of seismic attribute analysis to improve accuracy of interpretations, and also to not dismiss older seismic data that has low accurate imaging, as the variable amplitude subparallel horizons might have a geologic origin.


1995 ◽  
Vol 35 (1) ◽  
pp. 65
Author(s):  
S.I. Mackie ◽  
C.M. Gumley

The Dirkala Field is located in the southern Murta Block of PEL's 5 and 6 in the southern Cooper and Eromanga Basins. Excellent oil produc­tion from a single reservoir sandstone in the Juras­sic Birkhead Formation in Dirkala-1 had indicated a potentially larger resource than could be mapped volumetrically. The hypothesis that the resource was stratigraphically trapped led to the need to define the fluvial sand reservoir seismically and thereby prepare for future development.A small (16 km2) 3D seismic survey was acquired over the area in December 1992. The project was designed not only to evaluate the limits of the Birkhead sand but also to evaluate the cost effi­ciency of recording such small 3D surveys in the basin.Interpretation of the data set integrated with seismic modelling and seismic attribute analysis delineated a thin Birkhead fluvial channel sand reservoir. Geological pay mapping matched volu­metric estimates from production performance data. Structural mapping showed Dirkala-1 to be opti­mally placed and that no further development drill­ing was justifiable.Seismic characteristics comparable with those of the Dirkala-1 Birkhead reservoir were noted in another area of the survey beyond field limits. This led to the proposal to drill an exploration well, Dirkala South-1, which discovered a new oil pool in the Birkhead Formation. A post-well audit of the pre-drill modelling confirmed that the seismic response could be used to determine the presence of the Birkhead channel sand reservoir.The acquisition of the Dirkala-3D seismic survey demonstrated the feasibility of conducting small 3D seismic surveys to identify subtle stratigraphically trapped Eromanga Basin accumulations at lower cost and risk than appraisal/development drilling based on 2D seismic data.


Sign in / Sign up

Export Citation Format

Share Document