Machine learning to reduce cycle time for time-lapse seismic data assimilation into reservoir management

2019 ◽  
Vol 7 (3) ◽  
pp. SE123-SE130
Author(s):  
Yang Xue ◽  
Mariela Araujo ◽  
Jorge Lopez ◽  
Kanglin Wang ◽  
Gautam Kumar

Time-lapse (4D) seismic is widely deployed in offshore operations to monitor improved oil recovery methods including water flooding, yet its value for enhanced well and reservoir management is not fully realized due to the long cycle times required for quantitative 4D seismic data assimilation into dynamic reservoir models. To shorten the cycle, we have designed a simple inversion workflow to estimate reservoir property changes directly from 4D attribute maps using machine-learning (ML) methods. We generated tens of thousands of training samples by Monte Carlo sampling from the rock-physics model within reasonable ranges of the relevant parameters. Then, we applied ML methods to build the relationship between the reservoir property changes and the 4D attributes, and we used the learnings to estimate the reservoir property changes given the 4D attribute maps. The estimated reservoir property changes (e.g., water saturation changes) can be used to analyze injection efficiency, update dynamic reservoir models, and support reservoir management decisions. We can reduce the turnaround time from months to days, allowing early engagements with reservoir engineers to enhance integration. This accelerated data assimilation removes a deterrent for the acquisition of frequent 4D surveys.

2020 ◽  
Author(s):  
Konrad Wojnar ◽  
Jon S?trom ◽  
Tore Felix Munck ◽  
Martha Stunell ◽  
Stig Sviland-Østre ◽  
...  

Abstract The aim of the study was to create an ensemble of equiprobable models that could be used for improving the reservoir management of the Vilje field. Qualitative and quantitative workflows were developed to systematically and efficiently screen, analyze and history match an ensemble of reservoir simulation models to production and 4D seismic data. The goal of developing the workflows is to increase the utilization of data from 4D seismic surveys for reservoir characterization. The qualitative and quantitative workflows are presented, describing their benefits and challenges. The data conditioning produced a set of history matched reservoir models which could be used in the field development decision making process. The proposed workflows allowed for identification of outlying prior and posterior models based on key features where observed data was not covered by the synthetic 4D seismic realizations. As a result, suggestions for a more robust parameterization of the ensemble were made to improve data coverage. The existing history matching workflow efficiently integrated with the quantitative 4D seismic history matching workflow allowing for the conditioning of the reservoir models to production and 4D data. Thus, the predictability of the models was improved. This paper proposes a systematic and efficient workflow using ensemble-based methods to simultaneously screen, analyze and history match production and 4D seismic data. The proposed workflow improves the usability of 4D seismic data for reservoir characterization, and in turn, for the reservoir management and the decision-making processes.


SPE Journal ◽  
2021 ◽  
Vol 26 (02) ◽  
pp. 1011-1031
Author(s):  
Gilson Moura Silva Neto ◽  
Ricardo Vasconcellos Soares ◽  
Geir Evensen ◽  
Alessandra Davolio ◽  
Denis José Schiozer

Summary Time-lapse-seismic-data assimilation has been drawing the reservoir-engineering community's attention over the past few years. One of the advantages of including this kind of data to improve the reservoir-flow models is that it provides complementary information compared with the wells' production data. Ensemble-based methods are some of the standard tools used to calibrate reservoir models using time-lapse seismic data. One of the drawbacks of assimilating time-lapse seismic data involves the large data sets, mainly for large reservoir models. This situation leads to high-dimensional problems that demand significant computational resources to process and store the matrices when using conventional and straightforward methods. Another known issue associated with the ensemble-based methods is the limited ensemble sizes, which cause spurious correlations between the data and the parameters and limit the degrees of freedom. In this work, we propose a data-assimilation scheme using an efficient implementation of the subspace ensemble randomized maximum likelihood (SEnRML) method with local analysis. This method reduces the computational requirements for assimilating large data sets because the number of operations scales linearly with the number of observed data points. Furthermore, by implementing it with local analysis, we reduce the memory requirements at each update step and mitigate the effects of the limited ensemble sizes. We test two local analysis approaches: one distance-based approach and one correlation-based approach. We apply these implementations to two synthetic time-lapse-seismic-data-assimilation cases, one 2D example, and one field-scale application that mimics some of the real-field challenges. We compare the results with reference solutions and with the known ensemble smoother with multiple data assimilation (ES-MDA) using Kalman gain distance-based localization. The results show that our method can efficiently assimilate time-lapse seismic data, leading to updated models that are comparable with other straightforward methods. The correlation-based local analysis approach provided results similar to the distance-based approach, with the advantage that the former can be applied to data and parameters that do not have specific spatial positions.


2021 ◽  
pp. 1-59
Author(s):  
Marwa Hussein ◽  
Robert R. Stewart ◽  
Deborah Sacrey ◽  
David H. Johnston ◽  
Jonny Wu

Time-lapse (4D) seismic analysis plays a vital role in reservoir management and reservoir simulation model updates. However, 4D seismic data are subject to interference and tuning effects. Being able to resolve and monitor thin reservoirs of different quality can aid in optimizing infill drilling or locating bypassed hydrocarbons. Using 4D seismic data from the Maui field in the offshore Taranaki basin of New Zealand, we generate typical seismic attributes sensitive to reservoir thickness and rock properties. We find that spectral instantaneous attributes extracted from time-lapse seismic data illuminate more detailed reservoir features compared to those same attributes computed on broadband seismic data. We develop an unsupervised machine learning workflow that enables us to combine eight spectral instantaneous seismic attributes into single classification volumes for the baseline and monitor surveys using self-organizing maps (SOM). Changes in the SOM natural clusters between the baseline and monitor surveys suggest production-related changes that are caused primarily by water replacing gas as the reservoir is being swept under a strong water drive. The classification volumes also facilitate monitoring water saturation changes within thin reservoirs (ranging from very good to poor quality) as well as illuminating thin baffles. Thus, these SOM classification volumes show internal reservoir heterogeneity that can be incorporated into reservoir simulation models. Using meaningful SOM clusters, geobodies are generated for the baseline and monitor SOM classifications. The recoverable gas reserves for those geobodies are then computed and compared to production data. The SOM classifications of the Maui 4D seismic data seems to be sensitive to water saturation change and subtle pressure depletions due to gas production under a strong water drive.


Geophysics ◽  
2019 ◽  
Vol 85 (1) ◽  
pp. M15-M31 ◽  
Author(s):  
Mingliang Liu ◽  
Dario Grana

We have developed a time-lapse seismic history matching framework to assimilate production data and time-lapse seismic data for the prediction of static reservoir models. An iterative data assimilation method, the ensemble smoother with multiple data assimilation is adopted to iteratively update an ensemble of reservoir models until their predicted observations match the actual production and seismic measurements and to quantify the model uncertainty of the posterior reservoir models. To address computational and numerical challenges when applying ensemble-based optimization methods on large seismic data volumes, we develop a deep representation learning method, namely, the deep convolutional autoencoder. Such a method is used to reduce the data dimensionality by sparsely and approximately representing the seismic data with a set of hidden features to capture the nonlinear and spatial correlations in the data space. Instead of using the entire seismic data set, which would require an extremely large number of models, the ensemble of reservoir models is iteratively updated by conditioning the reservoir realizations on the production data and the low-dimensional hidden features extracted from the seismic measurements. We test our methodology on two synthetic data sets: a simplified 2D reservoir used for method validation and a 3D application with multiple channelized reservoirs. The results indicate that the deep convolutional autoencoder is extremely efficient in sparsely representing the seismic data and that the reservoir models can be accurately updated according to production data and the reparameterized time-lapse seismic data.


2016 ◽  
Vol 19 (03) ◽  
pp. 391-402
Author(s):  
Sunday Amoyedo ◽  
Emmanuel Ekut ◽  
Rasaki Salami ◽  
Liliana Goncalves-Ferreira ◽  
Pascal Desegaulx

Summary This paper presents case studies focused on the interpretation and integration of seismic reservoir monitoring from several fields in conventional offshore and deepwater Niger Delta. The fields are characterized by different geological settings and development-maturity stages. We show different applications varying from qualitative to quantitative use of time-lapse (4D) seismic information. In the first case study, which is in shallow water, the field has specific reservoir-development challenges, simple geology, and is in phased development. On this field, 4D seismic, which was acquired several years ago, is characterized by poor seismic repeatability. Nevertheless, we show that because of improvements from seismic reprocessing, 4D seismic makes qualitative contributions to the ongoing field development. In the second case study, the field is characterized by complex geological settings. The 4D seismic is affected by overburden with strong lateral variations in velocity and steeply dipping structure (up to 40°). Prestack-depth-imaging (PSDM) 4D seismic is used in a more-qualitative manner to monitor gas injection, validate the geologic/reservoir models, optimize infill injector placement, and consequently, enhance field-development economics. The third case study presents a deep offshore field characterized by a complex depositional system for some reservoirs. In this example, good 4D-seismic repeatability (sum of source- and receiver-placement differences between surveys, dS+dR) is achieved, leading to an increased quantitative use of 4D monitoring for the assessment of sand/sand communication, mapping of oil/water (OWC) front, pressure evolution, and dynamic calibration of petro-elastic model (PEM), and also as a seismic-based production-logging tool. In addition, 4D seismic is used to update seismic interpretation, provide a better understanding of internal architecture of the reservoirs units, and, thereby, yield a more-robust reservoir model. The 4D seismic in this field is a key tool for field-development optimization and reservoir management. The last case study illustrates the need for seismic-feasibility studies to detect 4D responses related to production. In addition to assessing the impact of the field environment on the 4D- seismic signal, these studies also help in choosing the optimum seismic-survey type, design, and acquisition parameters. These studies would possibly lead to the adoption of new technologies such as broad-band streamer or nodes acquisition in the near future.


Author(s):  
A. Ogbamikhumi ◽  
T. Tralagba ◽  
E. E. Osagiede

Field ‘K’ is a mature field in the coastal swamp onshore Niger delta, which has been producing since 1960. As a huge producing field with some potential for further sustainable production, field monitoring is therefore important in the identification of areas of unproduced hydrocarbon. This can be achieved by comparing production data with the corresponding changes in acoustic impedance observed in the maps generated from base survey (initial 3D seismic) and monitor seismic survey (4D seismic) across the field. This will enable the 4D seismic data set to be used for mapping reservoir details such as advancing water front and un-swept zones. The availability of good quality onshore time-lapse seismic data for Field ‘K’ acquired in 1987 and 2002 provided the opportunity to evaluate the effect of changes in reservoir fluid saturations on time-lapse amplitudes. Rock physics modelling and fluid substitution studies on well logs were carried out, and acoustic impedance change in the reservoir was estimated to be in the range of 0.25% to about 8%. Changes in reservoir fluid saturations were confirmed with time-lapse amplitudes within the crest area of the reservoir structure where reservoir porosity is 0.25%. In this paper, we demonstrated the use of repeat Seismic to delineate swept zones and areas hit with water override in a producing onshore reservoir.


Sign in / Sign up

Export Citation Format

Share Document