Reciprocal velocity-porosity general linear form provides consistent and systematic industry-wide applications

2019 ◽  
Vol 7 (4) ◽  
pp. T751-T759
Author(s):  
Killian Ikwuakor

Velocity is an important rock property that is required and used in different applications in petrophysics, rock physics, and seismic. The published literature shows a plethora of equations and models that relate velocity and porosity, a critical reservoir property. Attempts to account for the presence of shale in the formation invariably lead to more complicated relations. The inability of the industry to streamline these relations handicaps advancements in rock physics and formation evaluation, complicates the application of best practices in time-lapse seismic and fluid substitutions, and jeopardizes the integration of petrophysical, geologic, and seismic characteristics of oil and gas reservoirs. I have considered the following criteria to grade some of the different velocity-porosity relations in use today: (1) the significance of effective stress, (2) usefulness for interpreting geology, (3) predictive capability, and (4) universal applicability. Judging by these criteria, the general linear form, first prescribed by the late George R. Pickett, is the clear winner. The general linear form is a linear relationship between the reciprocal velocity and porosity. It passes theoretical and empirical justification. It is also valid for P- and S-wave velocities, yields easily to mathematical manipulation, and satisfies carbonate as well as clastic rocks for porosities encountered in everyday subsurface investigations. I evaluate practical examples in which the general linear form is the basis for multiple rock-typing criteria, comparative formation evaluation, and interpretive use of the [Formula: see text] ratio. Appropriate integration of the general linear form with other rock property relations provides avenues to redefine the [Formula: see text] ratio and acoustic impedance, and it expands the understanding and applications of reservoir elastic properties, as well as it constrains and streamlines rock physics models and applications.

2020 ◽  
Vol 25 (1) ◽  
pp. 89-100
Author(s):  
Lin Zhou ◽  
Jianping Liao ◽  
Jingye Li ◽  
Xiaohong Chen ◽  
Tianchun Yang ◽  
...  

Accurately inverting changes in the reservoir elastic parameters that are caused by oil and gas exploitation is of great importance in accurately describing reservoir dynamics and enhancing recovery. Previously numerous time-lapse seismic inversion methods based on the approximate formulas of exact Zoeppritz equations or wave equations have been used to estimate these changes. However the low accuracy of calculations using approximate formulas and the significant calculation effort for the wave equations seriously limits the field application of these methods. However, these limitations can be overcome by using exact Zoeppritz equations. Therefore, we study the time-lapse seismic difference inversion method using the exact Zoeppritz equations. Firstly, the forward equation of time-lapse seismic difference data is derived based on the exact Zoeppritz equations. Secondly, the objective function based on Bayesian inversion theory is constructed using this equation, with the changes in elastic parameters assumed to obey a Gaussian distribution. In order to capture the sharp time-lapse changes of elastic parameters and further enhance the resolution of the inversion results, the blockiness constraint, which follows the differentiable Laplace distribution, is added to the prior Gaussian background model. All examples of its application show that the proposed method can obtain stable and reasonable P- and S-wave velocities and density changes from the difference data. The accuracy of estimation is higher than for existing methods, which verifies the effectiveness and feasibility of the new method. It can provide high-quality seismic inversion results for dynamic detailed reservoir description and well location during development.


2021 ◽  
Vol 5 (2) ◽  
pp. 47-52
Author(s):  
Emmanuel Aniwetalu ◽  
Akudo Ernest ◽  
Juliet Ilechukwu ◽  
Okechukwu Ikegwuonu ◽  
Uzochukwu Omoja

The analysis of 3-D and time-lapse seismic data in Isomu Field has offered the dynamic characterization of the reservoir changes. The changes were analyzed using fluid substitution and seismic velocity models. The results of the initial porosity of the reservoirs was 29.50% with water saturation value of12%.The oil and gas maintained saturation values of 40% and 48% with average compressional and shear wave velocities of 2905m/s and 1634m/s respectfully. However, in fluid substitution modelling, the results reflect a change in fluid properties where average gas and oil saturation assume a new status of 34% and 24% which indicates a decrease by 14% and 16% respectively. The average water saturation increases by 30% with an average value of 42%. The decrease in hydrocarbon saturation and increase in formation water influence the porosity. Thus, porosity decreased by 4.16% which probably arose from the closure of the aspect ratio crack due to pressure increase.


Geophysics ◽  
2011 ◽  
Vol 76 (5) ◽  
pp. O23-O33 ◽  
Author(s):  
Tiziana Vanorio ◽  
Amos Nur ◽  
Yael Ebert

The fundamental concept of time-lapse seismic monitoring is that changes in physical parameters—such as saturation, pore fluid pressure, temperature, and stress—affect rock and fluid properties, which in turn alter the seismic velocity and density. Increasingly, however, time-lapse seismic monitoring is called upon to quantify subsurface changes due in part to chemical reactions between injected fluids and the host rocks. This study springs from a series of laboratory experiments and high-resolution images assessing the changes in microstructure, transport, and seismic properties of fluid-saturated sandstones and carbonates injected with [Formula: see text]. Results show that injecting [Formula: see text] into a brine-rock system induces chemo-mechanical mechanisms that permanently change the rock frame. Injecting [Formula: see text] into brine-saturated-sandstones induces salt precipitation primarily at grain contacts and within small pore throats. In rocks with porosity lower than 10%, salt precipitation reduces permeability and increases P- and S-wave velocities of the dry rock frame. On the other hand, injecting [Formula: see text]-rich water into micritic carbonates induces dissolution of the microcrystalline matrix, leading to porosity enhancement and chemo-mechanical compaction under pressure. In this situation, the elastic moduli of the dry rock frame decrease. The results in these two scenarios illustrate that the time-lapse seismic response of chemically stimulated systems cannot be modeled as a pure fluid-substitution problem. A first set of empirical relationships links the time-variant effects of injection to the elastic properties of the rock frame using laboratory velocity measurements and advanced imaging.


Geophysics ◽  
2016 ◽  
Vol 81 (6) ◽  
pp. B235-B245 ◽  
Author(s):  
Mohammed Al Hosni ◽  
Stéphanie Vialle ◽  
Boris Gurevich ◽  
Thomas M. Daley

[Formula: see text] injection into subsurface reservoirs leads to pressure and saturation changes. Furthermore, [Formula: see text]-brine-minerals interaction could result in dissolution or reprecipitation of rock frame-forming minerals. Observed time-lapse seismic associated with [Formula: see text] injection into poorly consolidated sandstone at the Frio [Formula: see text] injection site (Texas, USA) could not be predicted using classical rock-physics models (i.e., models involving elastic changes in the rock frame due to saturations and/or pressures changes only, and assuming no changes in the rock microstructure). That, and the changes in the fluid chemistry after [Formula: see text] injection, suggests that the assumption of a constant rock microstructure might be violated. Using high-resolution time-lapse crosswell data, we have developed a methodology for estimating changes in the rock frame by quantifying the rock-frame drained moduli before and after [Formula: see text] injection. Based on rock microstructure diagnostics, we found that the changes in the drained frame elastic properties are due to the changes in the grain contact-cement percentage. The reduction in contact-cement percent is found to be variable throughout the reservoir, with a maximum near the injection well, down to 0.01% from the initial 0.1% contact cement; this results in more than 40% reduction in the drained frame shear and bulk moduli. [Formula: see text] saturation was estimated using this model for uniform and patchy saturation cases. Our rock-physics analysis may allow improved interpretation of time-lapse seismic for [Formula: see text] saturation in the context of other poorly consolidated sandstones with similar geomechanical properties. Having the P- and S-wave velocity time-lapse data is key to improve saturation estimates with this analysis method.


2004 ◽  
Vol 19 (03) ◽  
pp. 133-138 ◽  
Author(s):  
Hendrik Rohler ◽  
Ted Bornemann ◽  
Alexis Darquin ◽  
John Rasmus

2017 ◽  
Author(s):  
Evan Mutual ◽  
David Cho ◽  
Kristopher Albert Innanen

Author(s):  
A. Ogbamikhumi ◽  
T. Tralagba ◽  
E. E. Osagiede

Field ‘K’ is a mature field in the coastal swamp onshore Niger delta, which has been producing since 1960. As a huge producing field with some potential for further sustainable production, field monitoring is therefore important in the identification of areas of unproduced hydrocarbon. This can be achieved by comparing production data with the corresponding changes in acoustic impedance observed in the maps generated from base survey (initial 3D seismic) and monitor seismic survey (4D seismic) across the field. This will enable the 4D seismic data set to be used for mapping reservoir details such as advancing water front and un-swept zones. The availability of good quality onshore time-lapse seismic data for Field ‘K’ acquired in 1987 and 2002 provided the opportunity to evaluate the effect of changes in reservoir fluid saturations on time-lapse amplitudes. Rock physics modelling and fluid substitution studies on well logs were carried out, and acoustic impedance change in the reservoir was estimated to be in the range of 0.25% to about 8%. Changes in reservoir fluid saturations were confirmed with time-lapse amplitudes within the crest area of the reservoir structure where reservoir porosity is 0.25%. In this paper, we demonstrated the use of repeat Seismic to delineate swept zones and areas hit with water override in a producing onshore reservoir.


Sign in / Sign up

Export Citation Format

Share Document