INTEGRATED CHARACTERIZATION AND FAILURE MECHANISM FOR A MID PLEISTOCENE MTC DOMINANT INTERVAL IN THE MARS URSA BASIN, NORTHERN GULF OF MEXICO, USA

2020 ◽  
pp. 1-64
Author(s):  
Mario Andres Gutierrez ◽  
John W. Snedden

The economic and operational risks associated with Mass Transport Complexes (MTCs) in deepwater hydrocarbon exploration act as a principal motivation to investigate their depositional elements utilizing industry data. There is a lack of extensive seismic and well data coverage that limits the understanding of the processes associated with the evolution of MTCs within deepwater sedimentary basins. This study leverages a unique integrated dataset to evaluate the depositional character and potential failure mechanisms of seven identified MTCs preserved in a synkinematic mid-Pleistocene MTC-dominant interval that spans the hydrocarbon bearing Mars Ursa Basin in the Northern Gulf of Mexico. Through seismic interpretation and attribute extraction methods using a 3D PDSM seismic survey, we describe kinematic indicators and preserved morphodomains geometries of the identified MTCs. The MTC-dominant interval covers an area of 631 km2, a volume of 392 km3, and a maximum thickness of 549 m in minibasin centers. The interval is penetrated by fifteen boreholes that provide stratigraphic and lithologic calibration of the morphometric analyses. The lithological composition of the MTC-rich interval is claystone/mudstone-dominant with a few interbedded, thin sandstones. The identified kinematic indicators and geometric extent of the identified MTCs are a function of both local salt tectonics extrabasinal controls. The stratigraphic framework presented in this study constrains the timing of failures to a period of high sediment deposition related to a major increase of glacial input into the Quaternary Mississippi Fan. This study offers borehole calibrated MTC morphometrics preserved in a MTC-dominant interval whose failure is triggered by local salt inflation, but ultimately is a consequence of loading following increased sediment supply into the basin. The results from this robust data set build upon past integrated seismic-well studies that strive to improve the understanding of MTC processes and their implications in hydrocarbon exploration across salt sedimentary basins.

Geophysics ◽  
1987 ◽  
Vol 52 (12) ◽  
pp. 1708-1714 ◽  
Author(s):  
Joseph O. Ebeniro ◽  
Yosio Nakamura ◽  
Dale S. Sawyer

The presence of shallow, tectonized salt is a major impediment to exploration efforts in many sedimentary basins, including the northern Gulf of Mexico. The salt there forms a shallow tongue of high‐velocity material emplaced between lower‐velocity Tertiary and Quaternary sediments. Using conventional seismic reflection techniques, explorationists often have difficulty identifying the base of the salt tongue. Only in a very few instances (e.g., Buffler, 1983; Buffler et al., 1978; Watkins et al., 1978) have they been able to identify the base of the shallow salt. Interfaces below the salt are even more rarely observed.


2011 ◽  
Vol 51 (1) ◽  
pp. 549 ◽  
Author(s):  
Chris Uruski

Around the end of the twentieth century, awareness grew that, in addition to the Taranaki Basin, other unexplored basins in New Zealand’s large exclusive economic zone (EEZ) and extended continental shelf (ECS) may contain petroleum. GNS Science initiated a program to assess the prospectivity of more than 1 million square kilometres of sedimentary basins in New Zealand’s marine territories. The first project in 2001 acquired, with TGS-NOPEC, a 6,200 km reconnaissance 2D seismic survey in deep-water Taranaki. This showed a large Late Cretaceous delta built out into a northwest-trending basin above a thick succession of older rocks. Many deltas around the world are petroleum provinces and the new data showed that the deep-water part of Taranaki Basin may also be prospective. Since the 2001 survey a further 9,000 km of infill 2D seismic data has been acquired and exploration continues. The New Zealand government recognised the potential of its frontier basins and, in 2005 Crown Minerals acquired a 2D survey in the East Coast Basin, North Island. This was followed by surveys in the Great South, Raukumara and Reinga basins. Petroleum Exploration Permits were awarded in most of these and licence rounds in the Northland/Reinga Basin closed recently. New data have since been acquired from the Pegasus, Great South and Canterbury basins. The New Zealand government, through Crown Minerals, funds all or part of a survey. GNS Science interprets the new data set and the data along with reports are packaged for free dissemination prior to a licensing round. The strategy has worked well, as indicated by the entry of ExxonMobil, OMV and Petrobras into New Zealand. Anadarko, another new entry, farmed into the previously licensed Canterbury and deep-water Taranaki basins. One of the main results of the surveys has been to show that geology and prospectivity of New Zealand’s frontier basins may be similar to eastern Australia, as older apparently unmetamophosed successions are preserved. By extrapolating from the results in the Taranaki Basin, ultimate prospectivity is likely to be a resource of some tens of billions of barrels of oil equivalent. New Zealand’s largely submerged continent may yield continent-sized resources.


2017 ◽  
Vol 5 (3) ◽  
pp. SK141-SK159 ◽  
Author(s):  
Alan Patrick Bischoff ◽  
Andrew Nicol ◽  
Mac Beggs

The interaction between magmatism and sedimentation creates a range of petroleum plays at different stratigraphic levels due to the emplacement and burial of volcanoes. This study characterizes the spatio-temporal distribution of the fundamental building blocks (i.e., architectural elements) of a buried volcano and enclosing sedimentary strata to provide insights for hydrocarbon exploration in volcanic systems. We use a large data set of wells and seismic reflection surveys from the offshore Taranaki Basin, New Zealand, compared with outcropping volcanic systems worldwide to demonstrate the local impacts of magmatism on the evolution of the host sedimentary basin and petroleum system. We discover the architecture of Kora volcano, a Miocene andesitic polygenetic stratovolcano that is currently buried by more than 1000 m of sedimentary strata and hosts a subcommercial discovery within volcanogenic deposits. The 22 individual architectural elements have been characterized within three main stratigraphic sequences of the Kora volcanic system. These sequences are referred to as premagmatic (predate magmatism), synmagmatic (defined by the occurrence of intrusive, eruptive, and sedimentary architectural elements), and postmagmatic (degradation and burial of the volcanic structures after magmatism ceased). Potential petroleum plays were identified based on the distribution of the architectural elements and on the geologic circumstances resulting from the interaction between magmatism and sedimentation. At the endogenous level, emplacement of magma forms structural traps, such as drag folds and strata jacked up above intrusions. At the exogenous level, syneruptive, intereruptive, and postmagmatic processes mainly form stratigraphic and paleogeomorphic traps, such as interbedded volcano-sedimentary deposits, and upturned pinchout of volcanogenic and nonvolcanogenic coarse-grained deposits onto the volcanic edifice. Potential reservoirs are located at systematic vertical and lateral distances from eruptive centers. We have determined that identifying the architectural elements of buried volcanoes is necessary for building predictive models and for derisking hydrocarbon exploration in sedimentary basins affected by magmatism.


Radiocarbon ◽  
2016 ◽  
Vol 59 (2) ◽  
pp. 343-353 ◽  
Author(s):  
Carla S Hadden ◽  
Alexander Cherkinsky

AbstractStrombus alatus and Busycon sinistrum are large marine gastropods that are frequently recovered from archaeological contexts in southeastern North America. We previously proposed a reservoir age offset (ΔR) for B. sinistrum from the northern Gulf of Mexico region based on known-age pre-bomb 20th-century specimens. We also reported significant variability in radiocarbon both among and within S. alatus specimens, which precluded a reliable estimation of ΔR for this taxon. In this paper, we present a complementary data set from archaeological contexts to re-evaluate marine reservoir effects in the northern Gulf Coast region at multiple spatial and temporal scales. The new data set consists of a total of 13 14C age determinations from well-associated marine (B. sinistrum and S. alatus) and terrestrial (Odocoileus virginianus) samples from a closed context at the Bayou St. John (1BA21) archaeological site. We suggest a slightly updated ∆R value of –2±53 14C yr for late Holocene-age B. sinistrum from the northern Gulf Coast region. S. alatus, and possibly other species of strombid conchs, are poor candidates for 14C dating due to the highly variable 14C content observed within and among specimens. Though subregional variability in inputs of 14C-depleted waters is likely, life-history factors related to ontogenetic niche and/or habitat shifts appear to be a major influence in shell 14C for S. alatus.


2018 ◽  
Vol 6 (1) ◽  
pp. SB23-SB35
Author(s):  
Tibor Gúthy ◽  
Ernő Takács ◽  
Attila Csaba Kovács ◽  
Tamás Fancsik ◽  
Róbert Csabafi ◽  
...  

The first multicoverage, low-frequency deep reflection surveys in the Pannonian Basin were initiated in the late 1980s and were focused to southeast Hungary, where hydrocarbon and geothermal reserves were known. Deep seismic profiles (Pannonian Geotraverse transects) were shot according to the standards of hydrocarbon exploration data acquisition parameters to get information from the deep crust and the upper mantle. At the turn of the millennium, the international CELEBRATION 2000 deep seismic survey provided a large-scale velocity model of the Pannonian Basin and its surroundings. The substantial coverage of the collected data set enabled carrying out a detailed 3D velocity tomography study in northeast Hungary. In recent years, deep reflection data recorded in southeast Hungary became available from the oil and gas industry and several regional profiles were reprocessed and interpreted, which intersect the Pannonian Geotraverse transects. Along those lines, amplitude-preserving data processing with prestack depth migration was used to integrate new information into the existing geologic model. We aimed to evaluate recent results obtained from previous and new deep reflection data as well as from the 3D velocity tomography implemented beneath the eastern part of the Pannonian Basin. The mapped crustal scale features were incorporated into the previous geologic model. The updated model may help us to gain a better understanding of the peculiar crustal characteristics of this part of the Pannonian Basin and also provide information for hydrocarbon and geothermal potential assessments.


2018 ◽  
Vol 75 (5) ◽  
pp. 1664-1671 ◽  
Author(s):  
Beverly K Barnett ◽  
Laura Thornton ◽  
Robert Allman ◽  
Jeffrey P Chanton ◽  
William F Patterson

Abstract Radiocarbon (Δ14C) was analyzed in northern Gulf of Mexico (nGOM) red snapper (Lutjanus campechanus) otolith cores (n = 23), otolith edge samples (n = 12), and whole age-0 otoliths (n = 9), with edge samples and whole age-0 otoliths constituting known-age samples. There was no significant difference in the linear relationship of Δ14C versus year of formation between regional corals and known-age otolith samples, and a linear regression fit to the combined data from 1980 to 2015 extends the utility of the bomb radiocarbon chronometer for age validation. The entire regional coral and known-age otolith data set (1940 to 2015) was then utilized as a reference series to validate otolith-derived red snapper age estimates for cored otolith samples. A loess regression was fit to the reference data and then the sum of squared residuals (SSR) was computed from predicted versus observed birth years for cored adult otolith samples. This process was then repeated for ages biased ±1–4 years. Ages with no bias applied had the lowest SSR, thus validating red snapper age estimates and demonstrating the utility of the combined regional coral and known-age red snapper otolith Δ14C time series for age validation of nGOM marine fishes.


2014 ◽  
Vol 505 ◽  
pp. 209-226 ◽  
Author(s):  
H Zhang ◽  
DM Mason ◽  
CA Stow ◽  
AT Adamack ◽  
SB Brandt ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document