Recent developments in imaging the earth’s crust by deep seismic data beneath the eastern parts of the Pannonian Basin

2018 ◽  
Vol 6 (1) ◽  
pp. SB23-SB35
Author(s):  
Tibor Gúthy ◽  
Ernő Takács ◽  
Attila Csaba Kovács ◽  
Tamás Fancsik ◽  
Róbert Csabafi ◽  
...  

The first multicoverage, low-frequency deep reflection surveys in the Pannonian Basin were initiated in the late 1980s and were focused to southeast Hungary, where hydrocarbon and geothermal reserves were known. Deep seismic profiles (Pannonian Geotraverse transects) were shot according to the standards of hydrocarbon exploration data acquisition parameters to get information from the deep crust and the upper mantle. At the turn of the millennium, the international CELEBRATION 2000 deep seismic survey provided a large-scale velocity model of the Pannonian Basin and its surroundings. The substantial coverage of the collected data set enabled carrying out a detailed 3D velocity tomography study in northeast Hungary. In recent years, deep reflection data recorded in southeast Hungary became available from the oil and gas industry and several regional profiles were reprocessed and interpreted, which intersect the Pannonian Geotraverse transects. Along those lines, amplitude-preserving data processing with prestack depth migration was used to integrate new information into the existing geologic model. We aimed to evaluate recent results obtained from previous and new deep reflection data as well as from the 3D velocity tomography implemented beneath the eastern part of the Pannonian Basin. The mapped crustal scale features were incorporated into the previous geologic model. The updated model may help us to gain a better understanding of the peculiar crustal characteristics of this part of the Pannonian Basin and also provide information for hydrocarbon and geothermal potential assessments.

2021 ◽  
Author(s):  
Nouf AlJabri ◽  
Nan Shi

Abstract Nanoemulsions (NEs) are kinetically stable emulsions with droplet size on the order of 100 nm. Many unique properties of NEs, such as stability and rheology, have attracted considerable attention in the oil industry. Here, we review applications and studies of NEs for major upstream operations, highlighting useful properties of NEs, synthesis to render these properties, and techniques to characterize them. We identify specific challenges associated with large-scale applications of NEs and directions for future studies. We first summarize useful and unique properties of NEs, mostly arising from the small droplet size. Then, we compare different methods to prepare NEs based on the magnitude of input energy, i.e., low-energy and high-energy methods. In addition, we review techniques to characterize properties of NEs, such as droplet size, volume fraction of the dispersed phase, and viscosity. Furthermore, we discuss specific applications of NEs in four areas of upstream operations, i.e., enhanced oil recovery, drilling/completion, flow assurance, and stimulation. Finally, we identify challenges to economically tailor NEs with desired properties for large-scale upstream applications and propose possible solutions to some of these challenges. NEs are kinetically stable due to their small droplet size (submicron to 100 nm). Within this size range, the rate of major destabilizing mechanisms, such as coalescence, flocculation, and Ostwald ripening, is considerably slowed down. In addition, small droplet size yields large surface-to-volume ratio, optical transparency, high diffusivity, and controllable rheology. Similar to applications in other fields (food industry, pharmaceuticals, cosmetics, etc.), the oil and gas industry can also benefit from these useful properties of NEs. Proposed functions of NEs include delivering chemicals, conditioning wellbore/reservoir conditions, and improve chemical compatibility. Therefore, we envision NEs as a versatile technology that can be applied in a variety of upstream operations. Upstream operations often target a wide range of physical and chemical conditions and are operated at different time scales. More importantly, these operations typically consume a large amount of materials. These facts not only suggest efforts to rationally engineer properties of NEs in upstream applications, but also manifest the importance to economically optimize such efforts for large-scale operations. We summarize studies and applications of NEs in upstream operations in the oil and gas industry. We review useful properties of NEs that benefit upstream applications as well as techniques to synthesize and characterize NEs. More importantly, we identify challenges and opportunities in engineering NEs for large-scale operations in different upstream applications. This work not only focuses on scientific aspects of synthesizing NEs with desired properties but also emphasizes engineering and economic consideration that is important in the oil industry.


2021 ◽  
Author(s):  
Afungchwi Ronald Ngwashi ◽  
David O. Ogbe ◽  
Dickson O. Udebhulu

Abstract Data analytics has only recently picked the interest of the oil and gas industry as it has made data visualization much simpler, faster, and cost-effective. This is driven by the promising innovative techniques in developing artificial intelligence and machine-learning tools to provide sustainable solutions to ever-increasing problems of the petroleum industry activities. Sand production is one of these real issues faced by the oil and gas industry. Understanding whether a well will produce sand or not is the foundation of every completion job in sandstone formations. The Niger Delta Province is a region characterized by friable and unconsolidated sandstones, therefore it's more prone to sanding. It is economically unattractive in this region to design sand equipment for a well that will not produce sand. This paper is aimed at developing a fast and more accurate machine-learning algorithm to predict sanding in sandstone formations. A two-layered Artificial Neural Network (ANN) with back-propagation algorithm was developed using PYTHON programming language. The algorithm uses 11 geological and reservoir parameters that are associated with the onset of sanding. These parameters include depth, overburden, pore pressure, maximum and minimum horizontal stresses, well azimuth, well inclination, Poisson's ratio, Young's Modulus, friction angle, and shale content. Data typical of the Niger Delta were collected to validate the algorithm. The data was further split into a training set (70%) and a test set (30%). Statistical analyses of the data yielded correlations between the parameters and were plotted for better visualization. The accuracy of the ANN algorithm is found to depend on the number of parameters, number of epochs, and the size of the data set. For a completion engineer, the answer to the question of whether or not a well will require sand production control is binary-either a well will produce sand or it does not. Support vector machines (SVM) are known to be better suited as the machine-learning tools for binary identification. This study also presents a comparative analysis between ANN and SVM models as tools for predicting sand production. Analysis of the Niger Delta data set indicated that SVM outperformed ANN model even when the training data set is sparse. Using the 30% test set, ANN gives an accuracy, precision, recall, and F1 - Score of about 80% while the SVM performance was 100% for the four metrics. It is then concluded that machine learning tools such as ANN with back-propagation and SVM are simple, accurate, and easy-to-use tools for effectively predicting sand production.


The distinctive feature of petroleum businesses is its wide scope. After crude oil or gas extraction, resulting semi-products undergo dozens of transformation stages in supply chains to reach the final customer. Combination of quantity and quality multiplied by external market factors produce price fluctuations that are challenging for world economics. In this regard process management might be carried out to improve supply chain performance and assure the maximum business predictability. However, for such large-scale organizations it requires big effort in operational analysis, process enhancement and process control via information systems which successfully support traditional management in function-oriented organizational structures. This chapter explores the developed engineering matrix that embraces potential methods and tools applicable for oil and gas industry. Additionally, it reveals industrial peculiarities and delivers case studies about Iranian and Hungarian petroleum companies.


2020 ◽  
Vol 8 (8) ◽  
pp. 555 ◽  
Author(s):  
Dejan Brkić ◽  
Pavel Praks

Ships for drilling need to operate in the territorial waters of many different countries which can have different technical standards and procedures. For example, the European Union and European Economic Area EU/EEA product safety directives exclude from their scope drilling ships and related equipment onboard. On the other hand, the EU/EEA offshore safety directive requires the application of all the best technical standards that are used worldwide in the oil and gas industry. Consequently, it is not easy to select the most appropriate technical standards that increase the overall level of safety and environmental protection whilst avoiding the costs of additional certifications. We will show how some technical standards and procedures, which are recognized worldwide by the petroleum industry, can be accepted by various standardization bodies, and how they can fulfil the essential health and safety requirements of certain directives. Emphasis will be placed on the prevention of fire and explosion, on the safe use of equipment under pressure, and on the protection of personnel who work with machinery. Additionally considered is how the proper use of adequate procedures available at the time would have prevented three large scale offshore petroleum accidents: the Macondo Deepwater Horizon in the Gulf of Mexico in 2010; the Montara in the Timor Sea in 2009; the Piper Alpha in the North Sea in 1988.


2010 ◽  
Vol 50 (2) ◽  
pp. 685
Author(s):  
John Polglaze

Legends, myths and plain old misinformation abound of whale migrations interrupted by international shipping, dolphin populations displaced by dredging activities, and of seismic survey campaigns resulting in disoriented, beached whales. While risks exist, in truth the Australian petroleum industry continues to demonstrate that it can successfully coexist productively alongside populations of cetacean. These whales and dolphins are seemingly able to at least tolerate, if not actually be undisturbed by, underwater noise. Other risks to cetaceans from oil and gas activities, whether actual or perceived, encompass vessel strike, turbidity plumes from dredging, port developments, underwater blasting, spills, the laying and operation of pipelines, and similar. URS Australia’s John Polglaze is a specialist in the environmental impact evaluation of underwater noise, and has over 15 years experience in marine environmental management and impact assessment following nearly 20 years service in the Royal Australian Navy. John presents on the range of environmental impact assessment challenges for the oil and gas industry in Australian coastal and offshore regions, and effective, pragmatic solutions for demonstrating low risks to cetaceans and other sensitive marine fauna. These include the application and limitations of computer-based models to predict underwater noise and blast propagation, the development of a risk assessment framework that has proven effective with state and Commonwealth regulators, and case studies of real-life interactions between the petroleum industry and cetacean populations. In particular, he will discuss how misunderstanding and misapprehension of these complex issues unnecessarily complicates the challenges of environmental compliance. This topic is timely, given that Australia’s rapidly increasing whale populations, coupled with the continued expansion of offshore petroleum activities, will lead to more frequent interaction between and overlap of cetaceans and oil and gas activities.


1978 ◽  
Vol 18 (1) ◽  
pp. 204
Author(s):  
D. McMinn

Rapidly rising costs have created operating and investment problems for companies involved in the Australian hydrocarbon resource industry. Expenditure in this area has declined markedly in constant dollar terms, an adverse trend given Australia's outlook for increasing reliance on imported crude oil in the 1980's.Costs in hydrocarbon exploration appear to have risen in excess of general inflation in the Australian economy. This situation may be attributed to the strong upward movement in wages and equipment costs, and in some cases, the low level of domestic exploration in the mid-1970's.Capital costs for hydrocarbon development and pipeline projects in Australia have also escalated, a trend caused by rising wage levels in project construction and increases in equipment costs. Additional factors such as design alterations, environmental considerations and labour disputes, can also add significantly to costs. Large scale hydrocarbon projects, which have long lead times, are susceptible to inflationary trends.Increasing amounts of funds are required for exploration and development as a result of the rising cost trend. However, difficulty is being experienced in raising funds through capital and equity markets, as well as retained earnings. A key factor in securing adequate funds is profitability, which is largely determined by the State and Federal Governments. For the smaller oil and gas producers, the past profitability record has been inadequate, although the improvement in recent years should continue because of higher oil and gas prices.Costs may be expected to continue to increase in hydrocarbon exploration and development, but probably at a lower rate than experienced in the mid- 1970's. The future viability of the hydrocarbon sector is dependent on a favourable investment environment and higher profitability to offset the considerable risks in exploration and escalation in costs.


2015 ◽  
Vol 55 (2) ◽  
pp. 490
Author(s):  
Adam Davis

Despite debate, the fact remains that the climate is changing. When considering the factors that determine potential financial impacts and losses that upstream oil and gas business could suffer due to a changing climate, the issues may primarily appear to be related to weather and geography. On closer examination, the factors that determine the severity of the impacts and losses are largely determined by the design and interdependencies of the financial and economic mechanisms of risk management. There is an increasing consensus in the insurance industry that the challenge presented by climate change, along with the increasing power of climate models, will result in far-reaching changes to the presently accepted practices of risk transfer. This extended abstract describes the increased power of climate models and the improved understanding of the present levels of under-adaptation when viewed from the position of investors in large-scale and long-lived oil and gas assets in Australia. It then looks at risk transfer models and examines potential limitations that have been identified due to the focus on ad-hoc post-disaster recovery when compared to a cost-effective pre-disaster resilience approach. The extended abstract then discusses how changes in the risk transfer approach could affect the financial aspects of an oil and gas business, such as the cost of borrowing, self-insurance, capital allocation and planning.


2017 ◽  
Vol 2017 (1) ◽  
pp. 1487-1506 ◽  
Author(s):  
Joseph V. Mullin

Abstract 2017-161 Over the past four decades, the oil and gas industry has made significant advances in being able to detect, contain and clean up spills and mitigate the residual consequences in Arctic environments. Many of these advances were achieved through collaborative research programs involving industry, academic and government partners. The Arctic Oil Spill Response Technology - Joint Industry Programme (JIP), was launched in 2012 and completed in early 2017 with the objectives of building on an already extensive knowledge base to further improve Arctic spill response capabilities and better understand the environmental issues involved in selecting and implementing the most effective response strategies. The JIP was a collaboration of nine oil and gas companies (BP, Chevron, ConocoPhillips, Eni, ExxonMobil, North Caspian Operating Company, Shell, Statoil, and Total) and focused on six key areas of oil spill response: dispersants; environmental effects; trajectory modeling; remote sensing; mechanical recovery and in-situ burning. The JIP provided a vehicle for sharing knowledge among the participants and international research institutions and disseminating information to regulators, the public and stakeholders. The network of engaged scientists and government agencies increased opportunities to develop and test oil spill response technologies while raising awareness of industry efforts to advance the existing capabilities in Arctic oil spill response. The JIP consisted of two phases, the first included technical assessments and state of knowledge reviews resulting in a library of sixteen documents available on the JIP website. The majority of the JIP efforts focused on Phase 2, actual experiments, and included laboratory, small and medium scale tank tests, and field research experiments. Three large-scale field tests were conducted in the winter and spring months of 2014–2016 including recent participation of the JIP in the 2016 NOFO oil on water exercise off Norway. The JIP was the largest pan-industry programme dedicated to oil spill response in the Arctic, ever carried out. Twenty seven research projects were successfully and safely conducted by the world’s foremost experts on oil spill response from across industry, academia, and independent scientific institutions in ten countries. The overarching goal of the research was to address the differing aspects involved in oil spill response, including the methods used, and their applicability to the Arctic’s unique conditions. All research projects were conducted using established protocols and proven scientific technologies, some of which were especially adjusted for ice conditions. This paper describes the scope of the research conducted, results, and key findings. The JIP is committed to full transparency in disseminating the results through peer reviewed journal articles, and all JIP research reports are available free of charge at www.arcticresponsetechnology.org.


2014 ◽  
Vol 32 (4) ◽  
pp. 687-697 ◽  
Author(s):  
Martine B. Hannevik ◽  
Jon Anders Lone ◽  
Roald Bjørklund ◽  
Cato Alexander Bjørkli ◽  
Thomas Hoff

Author(s):  
M. T. Rahmati ◽  
G. Alfano ◽  
H. Bahai

Flexible risers which are used for transporting oil and gas between the seabed and surface in ultra-deep waters have a very complex internal structure. Therefore, accurate modeling of their behaviour is a great challenge for the oil and gas industry. Constitutive laws based on beam models which allow the large-scale dynamics of pipes to be related to the behaviour of its internal components can be used for multi-scale analysis of flexible risers. An integral part of these models is the small-scale FE model chosen and the detailed implementation of the boundary conditions. The small scale FE analyses are typically carried out on models of up to a few meters length. The computational requirements of these methods limit their applications for only multi-scale structural analysis based on a sequential approach. For nested multi-scale approaches (i.e. the so called FE2 method) and for multi-scale multi-physic analyses, e.g. fluid structure interaction modeling of flexible risers, more efficient methods are required. The emphasis of the present work is on a highly efficient small-scale modelling method for flexible risers. By applying periodic boundary conditions, only a small fraction of a flexible pipe is used for detailed analysis. The computational model is firstly described. Then, the capability of the method in capturing the detailed nonlinear effects and the great advantage in terms of significant CPU time saving entailed by this method are demonstrated. For proof of concept the approach is applied on a simplified 3-layer pipe made of inner and outer polymer layers and an intermediate armour layer made of 40 steel tendons.


Sign in / Sign up

Export Citation Format

Share Document