High resolution fixed-point seismic inversion
Resolution improvement always presents the crucial task in geological inversion. Band-limited characteristics of seismic data and noise make seismic inversion complicated. Specifically, geological inversion suffers from the deficiency of both low- and high-frequency components. We propose the fixed-point seismic inversion method to alleviate these issues. The problem of solving objective function is transformed into the problem of finding the fixed-point of objective function. Concretely, a recursive formula between seismic signal and reflection coefficient is established, which is characterized by good convergence and verified by model examples. The error between the model value and the inverted value is reduced to around zero after few iterations. The model examples show that in either case, that is, the seismic traces are noise-free or with a little noise, the model value can almost be duplicated. Even if the seismic trace is accompanied by the moderate noise, the optimal inverted results can still be obtained with the proposed method. The initial model constraint is further introduced into the objective function to increase the low-frequency component of the inverted results by adding prior information into the target function. The singular value decomposition (SVD) method is applied to the inversion framework, thus making a high improvement of anti-noise ability. At last, the synthetic models and seismic data are investigated following the proposed method. The inverted results obtained from the fixed-point seismic inversion are compared with those obtained from the conventional seismic inversion, and it is found that the former has a higher resolution than the latter.