PRESTACK SEISMIC INVERSION WITH STRUCTURAL CONSTRAINTS

2021 ◽  
pp. 1-41
Author(s):  
Dong Li ◽  
Suping Peng ◽  
rui Zhang ◽  
Yinling Guo ◽  
Yongxu Lu ◽  
...  

Pre-stack seismic inversion usually suffers from the lower signal-to-noise ratio, which could result in unstable inversion results. The conventional multi-trace lateral constrained inversion blurs the steeply dipping layers, whereas the simple structural constrained inversion is affected by noise. To solve this issue, an inversion method with multiple constraints is proposed, which include 1) A local smoothing operator is used to suppress the inversion anomalies caused by data noise, 2) a difference operator is used to protect the stratum boundary, 3) a structural dipping constraint is used to enhance the characterization of the possible dipping stratum. The multi-constraint inversion method suppresses the inversion anomalies caused by data noise without blurring the stratum boundary. The effects of different constraints in the inversion process and the influence of noise on the inversion results are analyzed. In multi-constraint inversion, the regularization coefficient of each constraint operator is dynamically changed, thereby controlling the significance of each regularization term in the inversion. The proposed algorithm is tested on synthetic and field data, which demonstrates its effectiveness and improved accuracy on the inversion results.

Geophysics ◽  
2021 ◽  
pp. 1-60
Author(s):  
Francesco Turco ◽  
Leonardo Azevedo ◽  
Dario Grana ◽  
Gareth J. Crutchley ◽  
Andrew R. Gorman

Quantitative characterization of gas hydrate systems on continental margins from seismic data is challenging, especially in regions where no well logs are available. However, probabilistical seismic inversion provides an effective means for constraining the physical properties of subsurface strata in such settings and analyzing the variability related to the results. We apply a workflow for the characterization of two deep-water gas hydrate reservoirs east of New Zealand, where high concentrations of gas hydrate have been inferred previously. We estimate porosity and gas hydrate saturation in the reservoirs from multi-channel seismic data through a two-step procedure based on geostatistical seismic and Bayesian petrophysical inversion built on a rock physics model for gas hydrate-bearing marine sediments. We found that the two reservoirs together host between 2.45 × 105 m3 and 1.72 × 106 m3 of gas hydrate, with the best estimate at 9.68 × 105 m3. This estimate provides a first-order assessment for further gas hydrate evaluations in the region. The two-step statistically based seismic inversion method is an effective approach for characterizing gas hydrate systems from long-offset seismic reflection data.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Alexa Booras ◽  
Tanner Stevenson ◽  
Connor N. McCormack ◽  
Marie E. Rhoads ◽  
Timothy D. Hanks

AbstractIn order to behave appropriately in a rapidly changing world, individuals must be able to detect when changes occur in that environment. However, at any given moment, there are a multitude of potential changes of behavioral significance that could occur. Here we investigate how knowledge about the space of possible changes affects human change point detection. We used a stochastic auditory change point detection task that allowed model-free and model-based characterization of the decision process people employ. We found that subjects can simultaneously apply distinct timescales of evidence evaluation to the same stream of evidence when there are multiple types of changes possible. Informative cues that specified the nature of the change led to improved accuracy for change point detection through mechanisms involving both the timescales of evidence evaluation and adjustments of decision bounds. These results establish three important capacities of information processing for decision making that any proposed neural mechanism of evidence evaluation must be able to support: the ability to simultaneously employ multiple timescales of evidence evaluation, the ability to rapidly adjust those timescales, and the ability to modify the amount of information required to make a decision in the context of flexible timescales.


2018 ◽  
Vol 56 (2) ◽  
pp. 1069-1079 ◽  
Author(s):  
Qiang Guo ◽  
Hongbing Zhang ◽  
Feilong Han ◽  
Zuoping Shang

2018 ◽  
Vol 615 ◽  
pp. A145 ◽  
Author(s):  
M. Mol Lous ◽  
E. Weenk ◽  
M. A. Kenworthy ◽  
K. Zwintz ◽  
R. Kuschnig

Context. Transiting exoplanets provide an opportunity for the characterization of their atmospheres, and finding the brightest star in the sky with a transiting planet enables high signal-to-noise ratio observations. The Kepler satellite has detected over 365 multiple transiting exoplanet systems, a large fraction of which have nearly coplanar orbits. If one planet is seen to transit the star, then it is likely that other planets in the system will transit the star too. The bright (V = 3.86) star β Pictoris is a nearby young star with a debris disk and gas giant exoplanet, β Pictoris b, in a multi-decade orbit around it. Both the planet’s orbit and disk are almost edge-on to our line of sight. Aims. We carry out a search for any transiting planets in the β Pictoris system with orbits of less than 30 days that are coplanar with the planet β Pictoris b. Methods. We search for a planetary transit using data from the BRITE-Constellation nanosatellite BRITE-Heweliusz, analyzing the photometry using the Box-Fitting Least Squares Algorithm (BLS). The sensitivity of the method is verified by injection of artificial planetary transit signals using the Bad-Ass Transit Model cAlculatioN (BATMAN) code. Results. No planet was found in the BRITE-Constellation data set. We rule out planets larger than 0.6 RJ for periods of less than 5 days, larger than 0.75 RJ for periods of less than 10 days, and larger than 1.05 RJ for periods of less than 20 days.


2014 ◽  
Vol 1 (1) ◽  
Author(s):  
G. Tosolini ◽  
J. M. Michalik ◽  
R. Córdoba ◽  
J. M. de Teresa ◽  
F. Pérez-Murano ◽  
...  

AbstractWe present the magnetic characterization of cobalt wires grown by focused electron beam-induced deposition (FEBID) and studied using static piezoresistive cantilever magnetometry. We have used previously developed high force sensitive submicron-thick silicon piezoresistive cantilevers. High quality polycrystalline cobalt microwires have been grown by FEBID onto the free end of the cantilevers using dual beam equipment. In the presence of an external magnetic field, the magnetic cobalt wires become magnetized, which leads to the magnetic field dependent static deflection of the cantilevers. We show that the piezoresistive signal from the cantilevers, corresponding to a maximum force of about 1 nN, can be measured as a function of the applied magnetic field with a good signal to noise ratio at room temperature. The results highlight the flexibility of the FEBID technique for the growth of magnetic structures on specific substrates, in this case piezoresistive cantilevers.


Sign in / Sign up

Export Citation Format

Share Document