Drilling and 4D seismic calibrated geomechanical model: Enabling extended-reach drilling well design in complex subsalt GOM play

Author(s):  
Farid Mohamed ◽  
Goke Akinniranye ◽  
Zhao Chad Kong ◽  
Samarjit Chakraborty ◽  
Christopher Walker ◽  
...  
2016 ◽  
Vol 56 (1) ◽  
pp. 225 ◽  
Author(s):  
Kunakorn Pokalai ◽  
David Kulikowski ◽  
Raymond L. Johnson ◽  
Manouchehr Haghighi ◽  
Dennis Cooke

Hydraulic fracturing in tight gas reservoirs has been performed in the Cooper Basin for decades in reservoirs containing high stress and pre-existing natural fractures, especially near faults. The hydraulic fracture is affected by factors such as tortuosity, high entry pressures, and the rock fabric including natural fractures. These factors cause fracture plane rotation and complexities, leading to fracture disconnection or reduced proppant placement during the treatment. In this paper, rock properties are estimated for a targeted formation using well logs to create a geomechanical model. Natural fracture and stress azimuths within the interval were interpreted from borehole image logs. The image log interpretations inferred that fissures are oriented 30–60° relative to the maximum horizontal stress. Next, diagnostic fracture injection test (DFIT) data was used with the poro-elastic stress equations to predict tectonic strains. Finally, the geomechanical model was history-matched with a planar 3D hydraulic fracturing simulator, and gave more insight into fracture propagation in an environment of pre-existing natural fractures. The natural fracture azimuths and calibrated geomechanical model are input into a framework to evaluate varying scenarios that might result based on a vertical or inclined well design. A well design is proposed based on the natural fracture orientation relative to the hydraulic fracture that minimises complexity to optimise proppant placement. In addition, further models and diagnostics are proposed to aid predicting the hydraulically induced fracture geometry, its impact on gas production, and optimising wellbore trajectory to positively interact with pre-existing natural fractures.


2012 ◽  
Author(s):  
Akong Bassey ◽  
Adewale Dosunmu ◽  
Tunde Alabi ◽  
Otutu Friday ◽  
Grace Nnorom

2021 ◽  
Author(s):  
Yahya Badar Nasser Al Amri ◽  
Qasim Al Rawahi ◽  
Humaid AL Adawi ◽  
Badar Al Maashari ◽  
Ludovic Soden ◽  
...  

Abstract A Large Omani Operator successfully achieved best in class performance in drilling extended reach dual-lateral wells in Oman. Turning the legs to achieve the required separation distance and continue drilling to the required depth through a thin fractured reservoir resulted in complex well trajectories and harsh drilling environment. This paper will focus on the newly innovative designs, engineering optimizations and utilizing lean methodology to overcome drilling risks and achieve best in class performance. Rotary Steerable system was utilized to drill the extended reach drilling (ERD) in 3D with continuous proportional steering technology. Advance modeling including lateral shocks, Torque and Drag and BHA design were as well key enablers. Logging while drilling tools supported reservoir mapping and real-time well placement decisions. To excel in lateral applications and overcome harsh drilling environment, a shallow cone tip profile with High Performance cutter bit technology was selected. A focus optimization project using lean tools was performed to map out the undercut process, visualize possible waste, perform root causes analysis and implement countermeasures to eliminate the process waste Regional benchmark showed that the performance of 11 wells drilled since the start of the campaign is located within the best 10% of the benchmark data which is marked as best in class performance. Due to the continues improvement, the campaign manages to reach a learning curve of 30%. Furthermore, the actual production from the wells was 300% more than the forecast. Using the advanced RSS and bit technologies resulted in reducing the Torque values in the lateral section by 30% which effectively increased the reservoir drilled interval by 22%. The designed BHA also managed to complete wells including multi undercuts (up to 6) in one run. One trip Whipstock System for creating the second leg is used as part of the well design. The Whipstock system which is uniquely set in the horizontal tangent section has achieved 100% success rate in setting and retrieving operations. The undercut activities have improved by 50% as a direct result of the optimization Lean project. In addition, utilizing lean methodology resulted in reducing the cost impact of the additional sidetracks (undercuts) which enabled having best reservoir quality and achieving savings over the total cost of ownership TCO. Extended Reach Dual lateral well design was utilized for the first time in PDO operations during this drilling campaign. This paper will present how advance modelling can enable the industry to deliver complex well designs. Additionally, it will introduce the company innovation in implementing the Lean philosophy to optimize the drilling operation.


2021 ◽  
Author(s):  
Anna Shakhova ◽  
Natalia Lisyutina ◽  
Irina Lebedeva ◽  
Oleg Valshin ◽  
Roman Savinov ◽  
...  

Abstract This paper provides the results that were achieved and shares the drilling unique practices that were implemented to deliver the first complex bilateral extended reach drilling (ERD) well in Odoptu-more field (North Dome). Well design driven by geological objectives considered drilling 215.9mm main and pilot holes (PH). Well complexity was governed by the type of a profile having ERD ratio of 5.22 (main hole) / 4.60 (PH) and trajectory's 3D nature (turn in azimuth of 90 degrees) compared to previous wells in the project drilled mainly with 2D profiles. Apart from the problems connected with drilling and casing upper sections key challenges comprised kicking off in 215.9mm open hole at 5955m MD and 1512m TVD with rotary steerable system, setting cement plugs at shallow true vertical depth (TVD) at 89 degrees of inclination to abandon laterally drilled PH, delivering 168.3mm production liner to bottom with a risk of entering a lateral while running in hole. An effective collaboration between integrated engineering team and customer departments went far beyond ERD standard set of operations already existing in the project thus allowing to break its own records and to set new achievements due to integrated technological approach. The longest 444.5mm section (2975 m) was drilled in one run achieving the record daily drilling rate and rate of penetration (ROP). Cementing of 244.5mm floated liner resulted in the highest good cement bond integrity percentage ever achieved among other wells in project due to new ways of casing standoff and fluid rheology hierarchy modeling. For the first time in the project 215.9mm main horizontal hole in extreme reach ERD well has been drilled by kicking off in open hole from the pilot horizontal one with push-the-bit rotary steerable system without a kickoff plug with pilot hole being abandoned by setting cement plugs. Project-specific risk assessment conducted by team allowed successful deployment of 168.3mm liner into the main hole. Moreover, due to thorough engineering planning electrical submersible pump (ESP) was run without extending 244.5mm liner to surface by tie-back thus saving additional 7 days. Drilling first bilateral ERD well unlocked opportunities for the operator to reach, explore and develop different extended geological targets thus eliminating well construction process of additional wells on drilling upper sections.


2021 ◽  
Vol 54 (2F) ◽  
pp. 48-61
Author(s):  
Walaa Khyrie ◽  
Ayad Alrazzaq

The oil and gas industry, wellbore instability plays an important role in financial losses and stops the operations while the drilling which leads to extra time known as non-productive time. In this work, a comprehensive study was carried out to realize the nature of the instability problems of the wellbore in Rumaila oilfield to improve the well design. The study goal is to develop a geomechanical model in one dimension by utilizing Schlumberger Techlog (Version 2015) software. Open hole wireline measurements were needed to develop the model. The model calibrating and validating with core laboratory tests (triaxial test), well test (Mini-frac test), repeated formation test. Mohr-Coulomb, Mogi-Coulomb, and Modified Lade are the three failure criteria which utilized to analyze the borehole breakouts and to determine the minimum mud weight needed for a stable wellbore wall. For more accuracy of the geomechanical model, the predicted profile of the borehole instability is compared with the actual failure of the borehole that is recorded by caliper log. The results of the analysis showed that the Mogi-Coulomb criteria are closer to the true well failure compared with the other two criteria and considered as the better criteria in predicting the rock failure in the Rumaila oilfield. The wellbore instability analysis revealed that the vertical and low deviated wells (less than 40º) is safer and more stable. While, the horizontal and directional wells should be drilled longitudinally to the direction of the minimum horizontal stresses at a range between 140º–150º North West-South East and the mud weight recommended is increased to 10.5 ppg to avoid most of instabilities problems. The results contribute in development plan of the wells nearby the studied area and decreasing NPT and cost.


Sign in / Sign up

Export Citation Format

Share Document