Application of surface wave velocity inversion to obtain S-wave statics in Qaidam Basin

Author(s):  
Yang Jun ◽  
Yang Huidong ◽  
Chai Wei ◽  
Luo Wenshan ◽  
Ning Bin ◽  
...  
Geophysics ◽  
1993 ◽  
Vol 58 (5) ◽  
pp. 713-719 ◽  
Author(s):  
Ghassan I. Al‐Eqabi ◽  
Robert B. Herrmann

The objective of this study is to demonstrate that a laterally varying shallow S‐wave structure, derived from the dispersion of the ground roll, can explain observed lateral variations in the direct S‐wave arrival. The data set consists of multichannel seismic refraction data from a USGS-GSC survey in the state of Maine and the province of Quebec. These data exhibit significant lateral changes in the moveout of the ground‐roll as well as the S‐wave first arrivals. A sequence of surface‐wave processing steps are used to obtain a final laterally varying S‐wave velocity model. These steps include visual examination of the data, stacking, waveform inversion of selected traces, phase velocity adjustment by crosscorrelation, and phase velocity inversion. These models are used to predict the S‐wave first arrivals by using two‐dimensional (2D) ray tracing techniques. Observed and calculated S‐wave arrivals match well over 30 km long data paths, where lateral variations in the S‐wave velocity in the upper 1–2 km are as much as ±8 percent. The modeled correlation between the lateral variations in the ground‐roll and S‐wave arrival demonstrates that a laterally varying structure can be constrained by using surface‐wave data. The application of this technique to data from shorter spreads and shallower depths is discussed.


2017 ◽  
Author(s):  
Valentina Socco ◽  
Farbod Khosro Anjom ◽  
Cesare Comina ◽  
Daniela Teodor

Sign in / Sign up

Export Citation Format

Share Document