Fluid flow within the plate boundary shear zones at Japan and Kuril Trenches

Author(s):  
Tetsuru Tsuru
2021 ◽  
Author(s):  
Laetitia Le Pourhiet

<p>Tectonic modelling is a very wide area of application over a large range of time scale and length scale. What mainly characterize this modelling field is the coexistence of brittle fractures which relates to the field of fracture mechanics and plastic to viscous shear zones which belongs to the two main branch of continuum mechanics (solid and fluid respectively).</p><p>This type of problems arises sometimes in engineering but material do not change their behavior with loading rate or with time or with temperature, and rarely are engineers interested in modelling large displacement in post failure stage.  As a result, tectonicists cannot use commercial packages to simulate their problems and need to develop methodologies specific to their field.</p><p>Historically, the first tectonics models made use of simple analogue materials and corresponded more to modelism than actual analogue models. While the imaging of the models, and the characterization of the analogue materials have made a lot of progress in the last 15 years, up to recently, most analogue models still relied on sand and silicone putty to represent the brittle and viscous counter part of tectonic plates.</p><p>Since the late 80’s, but mostly during the years 2000, numerical modelling has exploded on the market, as contrarily to analogue modelling, it was easier to capture the thermal dependence of frictional-viscous transition, I use frictional here because most models in tectonics use continuum mechanics approach and in fine do not include brittle material s.s. but rather frictional shear bands. Some groups run these types of simulation routinely in 3D today but this performance has been made at the cost of a major simplification in the rheology: the disappearance of elasticity and compressibility which was present in late 90’s early 2000 simulations and is still very costly because the treatment of “brittle” rheology seriously amped code performances.</p><p>Until recently, in both analogue and numerical modelling, I have some kind of feeling that we have been running the same routine experiments over and over again with better performance, or better acquisition.  </p><p>We are now entering a new exciting era in tectonic modelling both from experimental and numerical side: a ) emergence of complex analogue material or rheological laws that efforts in upscaling from micro-mechanical process observed on the field to plate boundary scale, or from earthquake cycle to plate tectonics, b) emergence of new interesting set up’s in terms of boundary conditions in 3D, c) development of robust numerical technics for brittle behavior d) development of new applications to make our field more predictive that will enlarge the community of end-users of the modelling results</p><p>I will review these novelties with some of the work develop with colleagues and students but also with examples from the literature and try to quickly draw a picture of where we are at and where we go.</p>


2019 ◽  
Author(s):  
Matthew S. Tarling ◽  
Steven A. F. Smith ◽  
James M. Scott ◽  
Jeremy S. Rooney ◽  
Cecilia Viti ◽  
...  

Abstract. Deciphering the internal structural and composition of large serpentinite-dominated shear zones will lead to an improved understanding of the rheology of the lithosphere in a range of tectonic settings. The Livingstone Fault in New Zealand is a > 1000 km long terrane-bounding structure that separates the basal portions (peridotite; serpentinised peridotite; metagabbros) of the Dun Mountain Ophiolite Belt from quartzofeldspathic schists of the Caples or Aspiring Terranes. Field and microstructural observations from eleven localities along a strike length of c. 140 km show that the Livingstone Fault is a steeply-dipping, serpentinite-dominated shear zone tens to several hundreds of metres wide. The bulk shear zone has a pervasive scaly fabric that wraps around fractured and faulted pods of massive serpentinite, rodingite and partially metasomatised quartzofeldspathic schist up to a few tens of metres long. S-C fabrics and lineations in the shear zone consistently indicate a steep Caples-side-up (i.e. east-side-up) shear sense, with significant local dispersion in kinematics where the shear zone fabrics wrap around pods. The scaly fabric is dominated (> 98 vol %) by fine-grained (≪ 10 μm) fibrous chrysotile and lizardite/polygonal serpentine, but infrequent (


2020 ◽  
Author(s):  
Zoe Braden ◽  
Whitney Behr

<p>The plate interface in subduction zones accommodates a wide range of seismic styles over different depths as a function of pressure-temperature conditions, compositional and fluid-pressure heterogeneities, deformation mechanisms, and degrees of strain localization. The shallow subduction interface (i.e. ~2-10 km subduction depths), in particular, can exhibit either slow slip events (e.g. Hikurangi) or megathrust earthquakes (e.g. Tohoku). To evaluate the factors governing these different slip behaviors, we need better constraints on the rheological properties of the shallow interface. Here we focus on exhumed rocks within the Chugach Complex of southern Alaska, which represents the Jurassic to Cretaceous shallow subduction interface of the Kula and North American plates. The Chugach is ideal because it exhibits progressive variations in subducted rock types through time, minimal post-subduction overprinting, and extensive along-strike exposure (~250 km). Our aims are to use field structural mapping, geochronology, and microstructural analysis to examine a) how strain is localized in different subducted protoliths, and b) the deformation processes, role of fluids, and strain localization mechanisms within each high strain zone. We interpret these data in the context of the relative ‘strengths’ of different materials on the shallow interface and possible styles of seismicity.  </p><p>Thus far we have characterized deformation features along a 1.25-km-thick melange belt within the Turnagain Arm region southeast of Anchorage.  The westernmost melange unit is sediment poor and consists of deep marine rocks with more chert, shale and mafic rocks than units to the east. The melange fabric is variably developed (weakly to strongly) throughout the unit and is steeply (sub-vertical) west-dipping with down-dip lineations. Quartz-calcite-filled dilational cracks are oriented perpendicular to the main melange fabric.</p><p>Drone imaging and structural mapping reveals 3 major discrete shear zones and 6-7 minor shear zones within the melange belt, all of which exhibit thrust kinematics. Major shear zones show a significant and observable strain gradient into a wide (~1 m) region of high strain and deform large blocks while minor shear zones are generally developed in narrow zones (~10-15 cm) of high strain between larger blocks. One major shear zone is developed in basalt and has closely-spaced, polished slip surfaces that define a facoidal texture; the basalt shear zone is ~1 m thick. Preserved pillows are observable in lower strain areas on either side of the shear zone but are deformed and indistinguishable within the high strain zone. The other two major shear zones are developed in shale and are matrix-supported with wispy, closely-spaced foliation and rotated porphyroclasts of chert and basalt; the shale shear zones are ~0.5-2 m thick.  </p><p>Abundant quartz-calcite veins parallel to the melange fabric and within shale shear zones record multiple generations of fluid-flow; early veins appear to be more silicic and later fluid flow involved only calcite precipitation. At the west, trench-proximal end of the mélange unit there is a 5-10 m thick silicified zone of fluid injection that is bound on one side by the basalt shear zone. Fluid injection appears to pre-date or be synchronous with shearing.</p>


2009 ◽  
Vol 60 (1) ◽  
pp. 15-33 ◽  
Author(s):  
Neven Georgiev ◽  
Bernard Henry ◽  
Neli Jordanova ◽  
Nikolaus Froitzheim ◽  
Diana Jordanova ◽  
...  

The emplacement mode of Upper Cretaceous plutons from the southwestern part of the Sredna Gora Zone (Bulgaria): structural and AMS study Several plutons located in the southwestern part of the Sredna Gora Zone — Bulgaria are examples of the Apuseni-Banat-Timok-Sredna Gora type of granites emplaced during Late Cretaceous (86-75 Ma) times. The studied intrusive bodies are spatially related to and deformed by the dextral Iskar-Yavoritsa shear zone. The deformation along the shear zone ceased at the time of emplacement of the undeformed Upper Cretaceous Gutsal pluton, which has intruded the Iskar-Yavoritsa mylonites. A clear transition from magmatic foliation to high-, moderate- and low-temperature superimposed foliation and lineation in the vicinity of the Iskar-Yavoritsa and related shear zones gives evidence for simultaneous tectonics and plutonism. Away from the shear zones, the granitoids appear macroscopically isotropic and were investigated using measurements of anisotropy of magnetic susceptibility at 113 stations. The studied samples show magnetic lineation and foliation, in agreement with the magmatic structures observed at a few sites. Typical features of the internal structure of the plutons are several sheet-like mafic bodies accompanied by swarms of mafic microgranular enclaves. Field observations indicate spatial relationships between mafic bodies and shear zones as well as mingling processes in the magma chamber which suggest simultaneous shearing and magma emplacement. Structural investigations as well as anisotropy of magnetic susceptibility (AMS) data attest to the controlling role of the NWSE trending Iskar-Yavoritsa shear zone and to the syntectonic emplacement of the plutons with deformation in both igneous rocks and their hosts. The tectonic situation may be explained by partitioning of oblique plate convergence into plate-boundary-normal thrusting in the Rhodopes and plate-boundary-parallel transcurrent shearing in the hinterland (Sredna Gora).


Geology ◽  
1997 ◽  
Vol 25 (1) ◽  
pp. 15 ◽  
Author(s):  
Eric Pili ◽  
Simon M. F. Sheppard ◽  
Jean-Marc Lardeaux ◽  
Jean-Emmanuel Martelat ◽  
Christian Nicollet

2021 ◽  
Author(s):  
Yan Lavallée ◽  
Takahiro Miwa ◽  
James D. Ashworth ◽  
Paul A. Wallace ◽  
Jackie E. Kendrick ◽  
...  

Abstract. The permeability of magma in shallow volcanic conduits controls the fluid flow and pore pressure development that regulates gas emissions and the style of volcanic eruptions. The architecture of the permeable porous structure is subject to changes as magma deforms and outgasses during ascent. Here, we present a high-resolution study of the permeability distribution across two conduit shear zones (marginal and central) developed in the dacitic spine that extruded towards the closing stages of the 1991–1995 eruption at Unzen volcano, Japan. The marginal shear zone is approximately 3.2 m wide and exhibits a 2-m wide, moderate shear zone with porosity and permeability similar to the conduit core, transitioning into a ~1-m wide, highly-sheared region with relatively low porosity and permeability, and an outer 20-cm wide cataclastic fault zone. The low porosity, highly-sheared rock further exhibits an anisotropic permeability network with slightly higher permeability along the shear plane (parallel to the conduit margin) and is locally overprinted by oblique dilational Riedel fractures. The central shear zone is defined by a 3-m long by ~9-cm wide fracture ending bluntly and bordered by a 15–40 cm wide damage zone with an increased permeability of ~3 orders of magnitude; directional permeability and resultant anisotropy could not be measured from this exposure. We interpret the permeability and porosity of the marginal shear zone to reflect the evolution of compactional (i.e., ductile) shear during ascent up to the point of rupture, estimated by Umakoshi et al. (2008), at ~500 m depth. At this point the compactional shear zone would have been locally overprinted by brittle rupture, promoting the development of a shear fault and dilational Riedel fractures during repeating phases of increased magma ascent rate, enhancing anisotropic permeability that channels fluid flow into, and along, the conduit margin. In contrast, we interpret the central shear zone as a shallow, late-stage dilational structure, which partially tore the spine core with slight displacement. We explore constraints from monitored seismicity and stick-slip behaviour to evaluate the rheological controls, which accompanied the upward shift from compactional toward dilational shear as magma approached the surface, and discuss their importance in controlling the permeability development of magma evolving from overall ductile to increasingly brittle behaviour during ascent and eruption.


Geosphere ◽  
2019 ◽  
Vol 15 (4) ◽  
pp. 1240-1261 ◽  
Author(s):  
S.P. Regan ◽  
G.J. Walsh ◽  
M.L. Williams ◽  
J.R. Chiarenzelli ◽  
M. Toft ◽  
...  

Abstract Extensional deformation in the lower to middle continental crust is increasingly recognized and shown to have significant impact on crustal architecture, magma emplacement, fluid flow, and ore deposits. Application of the concept of extensional strain to ancient orogenic systems, like the Grenville province of eastern North America, has helped decipher the structural evolution of these regions. The Marcy massif is a ∼3000 km2 Mesoproterozoic anorthosite batholith in the Adirondack Mountains (New York, USA) of the southern Grenville province. Bedrock geology mapping at 1:24,000 scale paired with characterization of bedrock exposed by recent landslides provides a glimpse into the structural architecture of the massif and its margin. New data demonstrate granulite- to amphibolite-facies deformational fabrics parallel the margin of the batholith, and that the Marcy massif is draped by a southeast-directed detachment zone. Within the massif, strain is localized into mutually offsetting conjugate shear zones with antithetic kinematic indicators. These relationships indicate that strain was coaxial within the Marcy massif, and that subsimple shear components of strain were partitioned along its margin. In situ U–Th–total Pb monazite analysis shows that deformation around and over the Marcy massif occurred from 1070 to 1060 Ma during granulite-facies metamorphism, and monazite from all samples record evidence for fluid-mediated dissolution reprecipitation from 1050 to 980 Ma. We interpret that rocks cooled isobarically after accretionary orogenesis and emplacement of the anorthosite-mangerite-charnockite-granite plutonic suite at ca. 1160–1140 Ma. Gravitational collapse during the Ottawan phase of the Grenville orogeny initiated along a southeast-directed detachment zone (Marcy massif detachment zone), which accommodated intrusion of the Lyon Mountain Granite Gneiss, and facilitated substantial fluid flow that catalyzed the formation of major ore deposits in the Adirondack Highlands.


Sign in / Sign up

Export Citation Format

Share Document