Broadband Impedance Model Building with the broadband, wide-azimuth and high density seismic data

2019 ◽  
Author(s):  
Huazhong WANG ◽  
Song GUO ◽  
Yang ZHOU
2019 ◽  
Vol 38 (8) ◽  
pp. 597-603
Author(s):  
Yong Fang ◽  
Wenshan Luo ◽  
Xiaoxia Luo ◽  
Xukui Feng ◽  
Bo Zhao ◽  
...  

Due to complicated near-surface conditions, including large elevation changes and complex geologic structures, accurate imaging of subsurface structures for hydrocarbon exploration in the foreland basins of western China has been challenging for many years. After decades of research and fieldwork, we developed an effective seismic exploration workflow that uses the latest technologies from acquisition to imaging. They include 3D high-density and wide-azimuth (WAZ) acquisition, 3D true-surface tilted transverse isotropy (TTI) anisotropic prestack depth migration, and dual-detachment structural modeling and interpretation. To further reduce uncertainty in velocity model building and improve imaging quality, our geologists, geophysicists, and reservoir engineers worked closely through the exploration cycle (seismic acquisition, processing, and interpretation). This exploration model has been used successfully in hydrocarbon exploration of many complex foothill areas in western China. Three-dimensional WAZ high-density seismic surveys have been conducted over 40,000 km2 of the foreland basins, greatly improving the field seismic data quality. After application of 3D true-surface TTI anisotropic depth model building and imaging with integrated structural interpretation, new discoveries of hydrocarbon reservoirs have increased. The application of new technologies not only increased drilling success but also reduced depth well-tie errors between seismic data and wells.


Geophysics ◽  
2016 ◽  
Vol 81 (5) ◽  
pp. C177-C191 ◽  
Author(s):  
Yunyue Li ◽  
Biondo Biondi ◽  
Robert Clapp ◽  
Dave Nichols

Seismic anisotropy plays an important role in structural imaging and lithologic interpretation. However, anisotropic model building is a challenging underdetermined inverse problem. It is well-understood that single component pressure wave seismic data recorded on the upper surface are insufficient to resolve a unique solution for velocity and anisotropy parameters. To overcome the limitations of seismic data, we have developed an integrated model building scheme based on Bayesian inference to consider seismic data, geologic information, and rock-physics knowledge simultaneously. We have performed the prestack seismic inversion using wave-equation migration velocity analysis (WEMVA) for vertical transverse isotropic (VTI) models. This image-space method enabled automatic geologic interpretation. We have integrated the geologic information as spatial model correlations, applied on each parameter individually. We integrate the rock-physics information as lithologic model correlations, bringing additional information, so that the parameters weakly constrained by seismic are updated as well as the strongly constrained parameters. The constraints provided by the additional information help the inversion converge faster, mitigate the ambiguities among the parameters, and yield VTI models that were consistent with the underlying geologic and lithologic assumptions. We have developed the theoretical framework for the proposed integrated WEMVA for VTI models and determined the added information contained in the regularization terms, especially the rock-physics constraints.


2003 ◽  
Vol 51 (1) ◽  
pp. 23-35 ◽  
Author(s):  
P. Dell'Aversana ◽  
D. Colombo ◽  
M. Buia ◽  
S. Morandi

2018 ◽  
Author(s):  
Nicusor Necula ◽  
Mihai Niculita ◽  
Mario Floris

Ground deformations are the result of interactions between terrain and various processes. Their identification and monitoring becomes an important step as they can provide insights about Earth’s dynamics or process triggering conditions. This paper aims to show the potential use of Sentinel-1 SAR images to identify ground deformations induced by neotectonics. Hence, we applied PS-InSAR stacking technique on Sentinel-1 ascending dataset in the area of Focșani basin, Eastern Romania. High density of PS obtained in populated areas allows the detection of tectonic fractures. They are characterized by blocks movement in opposite direction with 5-10 mm/year. Detection of geologic lineaments using free Sentinel-1 data presents a great advantage for future geological surveys which permits a better delineation of tectonic accidents, especially where seismic data are not available.


2021 ◽  
pp. 1-45
Author(s):  
Qin Su ◽  
Huahui Zeng ◽  
Yancan Tian ◽  
HaiLiang Li ◽  
Lei Lyu ◽  
...  

Seismic processing and interpretation techniques provide important tools for the oil and gas exploration of the Songliao Basin in eastern China, which is dominated by terrestrial facies. In the Songliao Basin, a large number of thin-sand reservoirs are widely distributed, which are the primary targets of potential oil and gas exploration and exploitation. An important job of the exploration in the Songliao Basin is to accurately describe the distribution of these thin-sand belts and the sand-body shapes. However, the thickness of these thin-sand reservoirs are generally below the resolution of the conventional seismic processing. Most of the reservoirs are thin-interbeds of sand and mudstones with strong vertical and lateral variations. This makes it difficult to accurately predict the vertical and horizontal distribution of the thin-sand bodies using the conventional seismic processing and interpretation methods. Additionally, these lithologic traps are difficult to identify due to the complex controlling factor and distribution characteristics, and strong concealment. These challenges motivate us to improve the seismic data quality to help delineate the thin-sand reservoirs. In this paper, we use the broadband, wide-azimuth, and high-density integrated seismic exploration technique to help delineate the thin-reservoirs. We first use field single-point excitation and single-point receiver acquisition to obtain seismic data with wide frequency-bands, wide-azimuth angles, and high folds, which contain rich geological information. Next, we perform the near-surface Q-compensation, viscoelastic prestack time migration, seismic attributes, and seismic waveform indication inversion on the new acquired seismic data. The 3D case study indicates the benefits of improving the imaging of thin-sand body and the accuracy of inversion and reservoir characterization using the method in this paper.


2021 ◽  
Author(s):  
Farah Syazana Dzulkefli ◽  
Kefeng Xin ◽  
Ahmad Riza Ghazali ◽  
Guo Qiang ◽  
Tariq Alkhalifah

Abstract Salt is known for having a generally low density and higher velocity compared with the surrounding rock layers which causes the energy to scatter once the seismic wavefield hits the salt body and relatively less energy is transmitted through the salt to the deeper subsurface. As a result, most of imaging approaches are unable to image the base of the salt and the reservoir below the salt. Even the velocity model building such as FWI often fails to illuminate the deeper parts of salt area. In this paper, we show that Full Wavefield Redatuming (FWR) is used to retrieved and enhance the seismic data below the salt area, leading to a better seismic image quality and allowing us to focus on updating the velocity in target area below the salt. However, this redatuming approach requires a good overburden velocity model to retrieved good redatumed data. Thus, by using synthetic SEAM model, our objective is to study on the accuracy of the overburden velocity model required for imaging beneath complex overburden. The results show that the kinematic components of wave propagation are preserved through redatuming even with heavily smoothed overburden velocity model.


First Break ◽  
2010 ◽  
Vol 28 (1747) ◽  
Author(s):  
L. Padmos ◽  
D. Davies ◽  
M. Davies ◽  
J. McGarrity
Keyword(s):  

Author(s):  
A. Ourabah ◽  
M. Grimshaw ◽  
J. Keggin ◽  
M. Kowalczyk-Kedzierska ◽  
J. Stone ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document