Accurate estimation of density from the inversion of multicomponent prestack seismic waveform data using a nondominated sorting genetic algorithm

2013 ◽  
Vol 32 (1) ◽  
pp. 94-98 ◽  
Author(s):  
Amit Padhi ◽  
Subhashis Mallick
Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-16 ◽  
Author(s):  
Jing Xiao ◽  
Jing-Jing Li ◽  
Xi-Xi Hong ◽  
Min-Mei Huang ◽  
Xiao-Min Hu ◽  
...  

As it is becoming extremely competitive in software industry, large software companies have to select their project portfolio to gain maximum return with limited resources under many constraints. Project portfolio optimization using multiobjective evolutionary algorithms is promising because they can provide solutions on the Pareto-optimal front that are difficult to be obtained by manual approaches. In this paper, we propose an improved MOEA/D (multiobjective evolutionary algorithm based on decomposition) based on reference distance (MOEA/D_RD) to solve the software project portfolio optimization problems with optimizing 2, 3, and 4 objectives. MOEA/D_RD replaces solutions based on reference distance during evolution process. Experimental comparison and analysis are performed among MOEA/D_RD and several state-of-the-art multiobjective evolutionary algorithms, that is, MOEA/D, nondominated sorting genetic algorithm II (NSGA2), and nondominated sorting genetic algorithm III (NSGA3). The results show that MOEA/D_RD and NSGA2 can solve the software project portfolio optimization problem more effectively. For 4-objective optimization problem, MOEA/D_RD is the most efficient algorithm compared with MOEA/D, NSGA2, and NSGA3 in terms of coverage, distribution, and stability of solutions.


2022 ◽  
Vol 204 ◽  
pp. 111999
Author(s):  
Hanting Wu ◽  
Yangrui Huang ◽  
Lei Chen ◽  
Yingjie Zhu ◽  
Huaizheng Li

2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
K. Vijayakumar

Congestion management is one of the important functions performed by system operator in deregulated electricity market to ensure secure operation of transmission system. This paper proposes two effective methods for transmission congestion alleviation in deregulated power system. Congestion or overload in transmission networks is alleviated by rescheduling of generators and/or load shedding. The two objectives conflicting in nature (1) transmission line over load and (2) congestion cost are optimized in this paper. The multiobjective fuzzy evolutionary programming (FEP) and nondominated sorting genetic algorithm II methods are used to solve this problem. FEP uses the combined advantages of fuzzy and evolutionary programming (EP) techniques and gives better unique solution satisfying both objectives, whereas nondominated sorting genetic algorithm (NSGA) II gives a set of Pareto-optimal solutions. The methods propose an efficient and reliable algorithm for line overload alleviation due to critical line outages in a deregulated power markets. The quality and usefulness of the algorithm is tested on IEEE 30 bus system.


Author(s):  
Michael Gineste ◽  
Jo Eidsvik

AbstractAn ensemble-based method for seismic inversion to estimate elastic attributes is considered, namely the iterative ensemble Kalman smoother. The main focus of this work is the challenge associated with ensemble-based inversion of seismic waveform data. The amount of seismic data is large and, depending on ensemble size, it cannot be processed in a single batch. Instead a solution strategy of partitioning the data recordings in time windows and processing these sequentially is suggested. This work demonstrates how this partitioning can be done adaptively, with a focus on reliable and efficient estimation. The adaptivity relies on an analysis of the update direction used in the iterative procedure, and an interpretation of contributions from prior and likelihood to this update. The idea is that these must balance; if the prior dominates, the estimation process is inefficient while the estimation is likely to overfit and diverge if data dominates. Two approaches to meet this balance are formulated and evaluated. One is based on an interpretation of eigenvalue distributions and how this enters and affects weighting of prior and likelihood contributions. The other is based on balancing the norm magnitude of prior and likelihood vector components in the update. Only the latter is found to sufficiently regularize the data window. Although no guarantees for avoiding ensemble divergence are provided in the paper, the results of the adaptive procedure indicate that robust estimation performance can be achieved for ensemble-based inversion of seismic waveform data.


2021 ◽  
Vol 6 (1) ◽  
pp. 243-266 ◽  
Author(s):  
Rezzy Eko Caraka ◽  
Rung Ching Chen ◽  
Hasbi Yasin ◽  
Suhartono Suhartono ◽  
Youngjo Lee ◽  
...  

The exposure rate to air pollution in most urban cities is really a major concern because it results to a life-threatening consequence for human health and wellbeing. Furthermore, the accurate estimation and continuous forecasting of pollution levels is a very complicated task.  In this paper, one of the space-temporal models, a vector autoregressive (VAR) with neural network (NN) and genetic algorithm (GA) was proposed and enhanced. The VAR could tackle the issue of multivariate time series, NN for nonlinearity, and GA for parameter estimation determination. Therefore, the model could be used to make predictions, such as the information of series and location data. The applied methods were on the pollution data, including NOX, PM2.5, PM10, and SO2 in Taipei, Hsinchu, Taichung, and Kaohsiung. The metaheuristics genetic algorithm was used to enhance the proposed methods during the experiments. In conclusion, the VAR-NN-GA gives a good accuracy when metric evaluation is used. Furthermore, the methods can be used to determine the phenomena of 10 years air pollution in Taiwan.


Sign in / Sign up

Export Citation Format

Share Document