Quaternary pollen analysis: recent progress in palaeoecology and palaeoclimatology

2003 ◽  
Vol 27 (4) ◽  
pp. 548-579 ◽  
Author(s):  
Heikki Seppä ◽  
K.D. Bennett

During the last decade Quaternary pollen analysis has developed towards improved pollen-taxonomical precision, automated pollen identification and more rigorous definition of pollen assemblage zones. There have been significant efforts to model the spatial representation of pollen records in lake sediments which is important for more precise interpretation of the pollen records in terms of past vegetation patterns. We review the difficulties in matching modelled post-glacial plant migration patterns with pollen-based palaeorecords and discuss the potential of DNA analysis of pollen to investigate the ancestry and past migration pathways of the plants. In population ecology there has been an acceleration of the widely advocated conceptual advance of pollen-analytical research from vaguely defined ‘environmental reconstructions’ towards investigating more precisely defined ecological problems aligned with the current ecological theories. Examples of such research have included an increasing number of investigations about the ecological impacts of past disturbances, often integrating pollen records with other palaeoecological data. Such an approach has also been applied to incorporate a time perspective to the questions of ecosystem restoration, nature conservation and forest management. New lines of research are the use of pollen analysis to study long-term patterns of vegetation diversity, such as the role of glacial-age vegetation fragmentation as a cause of Amazonian rain forest diversity, and to investigate links between pollen richness and past plant diversity. Palaeoclimatological use of pollen records has become more quantitative and has included more precise and rigorous testing of pollen-climate calibration models with modern climate data. These tests show the approximate nature of the models and warn against a too straightforward climatic interpretation of the small-scale variation in reconstructions. Pollen-based climate reconstructions over the Late Glacial-early Holocene boundary have indicated that pollen-stratigraphical changes have been rapid with no evidence for response lags. This does not rule out the possibility of migrational disequilibrium, however, as the rapid changes may be mostly due to nonmigrational responses of existing vegetation. It is therefore difficult to assess whether the amplitude of reconstructed climate change reflects real climate change. Other outstanding problems remain the obscure relationship of pollen production and climate, the role of human impact and other nonclimatic factors, and nonanalogue situations.

2020 ◽  
Vol 6 (1) ◽  
pp. 1-25
Author(s):  
Wadii Snaibi

AbstractThe high plateaus of eastern Morocco are already suffering from the adverse impacts of climate change (CC), as the local populations’ livelihoods depend mainly on extensive sheep farming and therefore on natural resources. This research identifies breeders’ perceptions about CC, examines whether they correspond to the recorded climate data and analyses endogenous adaptation practices taking into account the agroecological characteristics of the studied sites and the difference between breeders’ categories based on the size of owned sheep herd. Data on perceptions and adaptation were analyzed using the Chi-square independence and Kruskal-Wallis tests. Climate data were investigated through Mann-Kendall, Pettitt and Buishand tests.Herders’ perceptions are in line with the climate analysis in term of nature and direction of observed climate variations (downward trend in rainfall and upward in temperature). In addition, there is a significant difference in the adoption frequency of adaptive strategies between the studied agroecological sub-zones (χ2 = 14.525, p <.05) due to their contrasting biophysical and socioeconomic conditions, as well as among breeders’ categories (χ2 = 10.568, p < .05) which attributed mainly to the size of sheep flock. Policy options aimed to enhance local-level adaptation should formulate site-specific adaptation programs and prioritise the small-scale herders.


2011 ◽  
Vol 2 (1) ◽  
pp. 133-159
Author(s):  
J. F. Tjiputra ◽  
O. H. Otterå

Abstract. Using a fully coupled global climate-carbon cycle model, we assess the potential role of volcanic eruptions on future projection of climate change and its associated carbon cycle feedback. The volcanic-like forcings are applied together with business-as-usual IPCC-A2 carbon emissions scenario. We show that very large volcanic eruptions similar to Tambora lead to short-term substantial global cooling. However, over a long period, smaller but more frequent eruptions, such as Pinatubo, would have a stronger impact on future climate change. In a scenario where the volcanic external forcings are prescribed with a five-year frequency, the induced cooling immediately lower the global temperature by more than one degree before return to the warming trend. Therefore, the climate change is approximately delayed by several decades and by the end of the 21st century, the warming is still below two degrees when compared to the present day period. The cooler climate reduces the terrestrial heterotrophic respiration in the northern high latitude and increases net primary production in the tropics, which contributes to more than 45% increase in accumulated carbon uptake over land. The increased solubility of CO2 gas in seawater associated with cooler SST is offset by reduced CO2 partial pressure gradient between ocean and atmosphere, which results in small changes in net ocean carbon uptake. Similarly, there is nearly no change in the seawater buffer capacity simulated between the different volcanic scenarios. Our study shows that even in the relatively extreme scenario where large volcanic eruptions occur every five-years period, the induced cooling only leads to a reduction of 46 ppmv atmospheric CO2 concentration as compared to the reference projection of 878 ppmv, at the end of the 21st century. With respect to sulphur injection geoengineering method, our study suggest that small scale but frequent mitigation is more efficient than the opposite. Moreover, the longer we delay, the more difficult it would be to counteract climate change.


2013 ◽  
Vol 20 (2) ◽  
pp. 317-339 ◽  
Author(s):  
Ralph Lasage ◽  
Jeroen C. J. H. Aerts ◽  
Peter H. Verburg ◽  
Alemu Seifu Sileshi

2019 ◽  
Vol 116 (15) ◽  
pp. 7382-7386 ◽  
Author(s):  
Qinfeng Guo ◽  
Songlin Fei ◽  
Kevin M. Potter ◽  
Andrew M. Liebhold ◽  
Jun Wen

Nonnative pests often cause cascading ecological impacts, leading to detrimental socioeconomic consequences; however, how plant diversity may influence insect and disease invasions remains unclear. High species diversity in host communities may promote pest invasions by providing more niches (i.e., facilitation), but it can also diminish invasion success because low host dominance may make it more difficult for pests to establish (i.e., dilution). Most studies to date have focused on small-scale, experimental, or individual pest/disease species, while large-scale empirical studies, especially in natural ecosystems, are extremely rare. Using subcontinental-level data, we examined the role of tree diversity on pest invasion across the conterminous United States and found that the tree-pest diversity relationships are hump-shaped. Pest diversity increases with tree diversity at low tree diversity (because of facilitation or amplification) and is reduced at higher tree diversity (as a result of dilution). Thus, tree diversity likely regulates forest pest invasion through both facilitation and dilution that operate simultaneously, but their relative strengths vary with overall diversity. Our findings suggest the role of native species diversity in regulating nonnative pest invasions.


AMBIO ◽  
2021 ◽  
Author(s):  
Fiona Armstrong Simmance ◽  
Alison Budden Simmance ◽  
Jeppe Kolding ◽  
Kate Schreckenberg ◽  
Emma Tompkins ◽  
...  

AbstractSmall-scale inland capture fisheries provide an important source of nutritious food, employment and income to millions of people in developing countries, particularly in rural environments where limited alternatives exist. However, the sector is one of most under-valued fisheries sectors and is increasingly experiencing environmental change. This study adopts a Sustainable Livelihoods Approach and investigates how important a fluctuating inland fishery is to livelihoods, and how local perceptions on challenges corresponds to global evidence. Through an innovative participatory method; photovoice, the lived experiences and perceptions of fishers are depicted. The findings illuminate the valuable role of the sector to food and nutrition security and the complex nexus with vulnerability to climate change. The study responds to the call for more local level assessments of the impacts of climate change on inland fisheries in data-limited environments, and the value of the sector in underpinning the Sustainable Development Goals.


2021 ◽  
Author(s):  
Paula Galindo ◽  
Peter Frenzel ◽  
Sten Anslan ◽  
Sonja Rigterink ◽  
Julieta Massaferro ◽  
...  

&lt;p&gt;High altitudinal aquatic ecosystems are subject to environmental change due to global warming and increasing solar radiation. The Nam Co catchment is part of the highest and largest alpine plateau on Earth, where the effects of climate change are expressed stronger than the global average. Thus, this area has experienced rapid changes in biodiversity. Fluctuations between wetter and drier periods during the last 2,000 calibrated (cal.) years were detected. These changes may alter the dynamics in ecosystems and therefore their resilience to climate change.&lt;/p&gt;&lt;p&gt;A ~65 cm sediment record from Nam Co spanning the late Holocene, was analyzed to evaluate the assemblage composition of three of the most abundant and diverse benthic taxa (Arcellinidae, Ostracoda and Chironomidae) and the diverse family of small bivalves (Sphaeriidae). In general, the presence of the bivalve &lt;em&gt;Pisidium stewarti&lt;/em&gt;, together with a high abundance of black-coated ostracod shells, and high Ca/Ti and Zr/Rb ratios correspond to the driest period (~ 1,000 - 1,860 cal. years BP) detected in our sediment record. For the last 256 cal. years, higher lake levels were inferred from aquatic fauna composition and geochemical analysis (XRF and XRD) suggesting a more humid environment. This period was characterized by higher temperatures and a higher input of organic matter. Species not previously reported for Lake Nam Co such as Arcellinida species, the ostracod &lt;em&gt;Ilyocypris angulata&lt;/em&gt;, several chironomid species, and the bivalve &lt;em&gt;P. stewarti&lt;/em&gt;, were observed. These new records, as well as the detection of varieties in morphological structures (e.g. spines, aggregate material, valve ornamentations, etc.) highlight the probable existence of cryptic species in the ecosystem, which is an important factor to take into account for biodiversity evaluation and paleoenvironmental inferences, due to potential misleading ecological interpretation.&lt;/p&gt;&lt;p&gt;Therefore, emphasis should be placed on combining ecology, morphology and DNA analysis to corroborate the taxonomy of species already described, and determine the accurate richness and distribution of the species in an environment where endemism is expected. This is essential in order to evaluate possible losses or gains in terms of diversity that climate change may exert on aquatic ecosystems in the future.&lt;/p&gt;


2015 ◽  
Vol 76 (15) ◽  
Author(s):  
Sucharit Koontanakulvong ◽  
Chokchai Suthidhummajit

The Phitsanulok Irrigation Project is located in the Nan Basin of the Upper Central Plain of Thailand where farmers depended on both surface water and groundwater. Land use and climate changes are the important factors to determine the runoff from the watershed.  The changes also affected to runoff volume/pattern to the dam operation and may cause flood and drought situations in the downstream area. Sirikit Dam is one of the biggest dams in Thailand which cover about 25 % of the runoff into the Central Plain where the Bangkok Capital is located. Though there is the Sirikit Dams storing water to be used during dry period but water allocation is limited and still caused water shortage during dry season. The study aims to determine the role of groundwater to mitigate the drought situation from the past and to study the groundwater use for adaptation to climate change in The Phitsanulok Irrigation Development Project. In this study, the relationship of recharge rate with climate data was developed in terms of precipitation, evapotranspiration, temperature and soil type under monthly time series data and the study found that there were in good relationship. Groundwater will take an important role to alleviate from the water shortage situations in climate change conditions when compared with the situations based on the existing water use pattern. The limit of ground water to alleviate water shortage will be 80 and 77 MCM/year in average, in near future and far future periods to keep water table drawn down in the safe manner even when the Sirikit’s reservoir operation rule is improved.


2017 ◽  
Vol 10 (6) ◽  
pp. 566-576 ◽  
Author(s):  
Laban Musinguzi ◽  
Vianny Natugonza ◽  
Jackson Efitre ◽  
Richard Ogutu-Ohwayo

Sign in / Sign up

Export Citation Format

Share Document