A high mountain pollen-altitude calibration set for palaeoclimatic use in the tropical Andes

The Holocene ◽  
2006 ◽  
Vol 16 (1) ◽  
pp. 105-117 ◽  
Author(s):  
Valenti Rull

The numerical relationship between modem pollen assemblages and altitude in high mountain environments from the northern Andes is analysed, in order to found inference models that allow estimating palaeoaltitudes and palaeotemperatures from past pollen records. The calibration set (DM) consists of a 50-sample altitudinal transect between-2300 and-4600 m altitude. The overall and individual pollen responses to altitude were tested by correspondence analysis (CA), generalized linear regression (HOF) and weighted averaging (WA). Transfer functions were derived by weighted averaging partial least squares (WA-PLS) regression. Overall, altitude is the main controlling factor for the composition of pollen assemblages, as shown by the high correlation between altitude and the first CA component (r =-0.88). Individually, around 35% of the 82 pollen taxa show a significant response to altitude through monotonic or unimodal functions. The best transfer function obtained has a good statistical performance, as shown by the determination coefficient (r2tck =0.78). The prediction power, as measured by the root mean square error of prediction (RMSEP), is of 256 m (12% of the total altitudinal gradient), which is equivalent to-1.5C. These parameters fall within the performance range of the inference models developed elsewhere using pollen and other biological proxies. It is concluded that the DM training set is useful to reconstruct Pleistocene and major Holocene palaeoclimatic trends. This study demonstrates the suitability of establishing reliable transfer functions for palaeoclimatic estimation in the highest altitudes of the tropical Andes, and encourages their continued improvement.

2002 ◽  
Vol 59 (6) ◽  
pp. 938-951 ◽  
Author(s):  
Aline Philibert ◽  
Yves T Prairie

Despite the overwhelming tendency in paleolimnology to use both planktonic and benthic diatoms when inferring open-water chemical conditions, it remains questionable whether all taxa are appropriate and necessary to construct useful inference models. We examined this question using a 75-lake training set from Quebec (Canada) to assess whether model performance is affected by the deletion of benthic species. Because benthic species are known to experience very different chemical conditions than their planktonic counterparts, we hypothesized that they would introduce undesirable noise in the calibration. Surprisingly, such important variables as pH, total phosphorus (TP), total nitrogen (TN), and dissolved organic carbon (DOC) were well predicted from weighted-averaging partial least square (WA-PLS) models based solely on benthic species. Similar results were obtained regardless of the depth of the lakes. Although the effective number of occurrence (N2) and the tolerance of species influenced the stability of the model residual error (jackknife), the number of species was the major factor responsible for the weaker inference models when based on planktonic diatoms alone. Indeed, when controlled for the number of species in WA-PLS models, individual planktonic diatom species showed superior predictive power over individual benthic species in inferring open-water chemical conditions.


2016 ◽  
Vol 12 (5) ◽  
pp. 1263-1280 ◽  
Author(s):  
Frazer Matthews-Bird ◽  
Stephen J. Brooks ◽  
Philip B. Holden ◽  
Encarni Montoya ◽  
William D. Gosling

Abstract. Presented here is the first chironomid calibration data set for tropical South America. Surface sediments were collected from 59 lakes across Bolivia (15 lakes), Peru (32 lakes), and Ecuador (12 lakes) between 2004 and 2013 over an altitudinal gradient from 150 m above sea level (a.s.l) to 4655 m a.s.l, between 0–17° S and 64–78° W. The study sites cover a mean annual temperature (MAT) gradient of 25 °C. In total, 55 chironomid taxa were identified in the 59 calibration data set lakes. When used as a single explanatory variable, MAT explains 12.9 % of the variance (λ1/λ2 =  1.431). Two inference models were developed using weighted averaging (WA) and Bayesian methods. The best-performing model using conventional statistical methods was a WA (inverse) model (R2jack =  0.890; RMSEPjack =  2.404 °C, RMSEP – root mean squared error of prediction; mean biasjack =  −0.017 °C; max biasjack =  4.665 °C). The Bayesian method produced a model with R2jack =  0.909, RMSEPjack =  2.373 °C, mean biasjack =  0.598 °C, and max biasjack =  3.158 °C. Both models were used to infer past temperatures from a ca. 3000-year record from the tropical Andes of Ecuador, Laguna Pindo. Inferred temperatures fluctuated around modern-day conditions but showed significant departures at certain intervals (ca. 1600 cal yr BP; ca. 3000–2500 cal yr BP). Both methods (WA and Bayesian) showed similar patterns of temperature variability; however, the magnitude of fluctuations differed. In general the WA method was more variable and often underestimated Holocene temperatures (by ca. −7 ± 2.5 °C relative to the modern period). The Bayesian method provided temperature anomaly estimates for cool periods that lay within the expected range of the Holocene (ca. −3 ± 3.4 °C). The error associated with both reconstructions is consistent with a constant temperature of 20 °C for the past 3000 years. We would caution, however, against an over-interpretation at this stage. The reconstruction can only currently be deemed qualitative and requires more research before quantitative estimates can be generated with confidence. Increasing the number, and spread, of lakes in the calibration data set would enable the detection of smaller climate signals.


The Holocene ◽  
2018 ◽  
Vol 29 (2) ◽  
pp. 271-286 ◽  
Author(s):  
Giulia Furlanetto ◽  
Cesare Ravazzi ◽  
Federica Badino ◽  
Michele Brunetti ◽  
Elena Champvillair ◽  
...  

The potential of quantitatively reconstructing climate from modern pollen assemblages from high mountain environments has been widely debated but seldom tested. We analysed the pollen deposition in 53 surface samples (mosses) in relation to July temperature in two elevational transects in the European Alps. Each surface-sample site was assigned climate data derived from the local-scale climate. We compared our results with a larger calibration set extracted from the European Modern Pollen Database (EMPD) and centred on the European Alps. This also was assigned local climate data. The main calibration set (234 pollen samples) had Alnus harmonized at genus level; in contrast, a second set was selected (174) that retained the taxonomic resolution of Alnus viridis, which is one of the main climate indicators in the timberline ecotone. The overall and individual pollen responses to July temperature were inferred by canonical correspondence analysis (CCA), generalized linear regression (eHOF) and weighted averaging (WA). Quantitative climate reconstructions for each sample site of the two elevational transects were obtained using transfer functions, that is, WA and WA partial least squares (WA-PLS) regressions. In each calibration set, around 30% of the pollen taxa show a relationship with July temperature through monotonic or unimodal functions. The best transfer function obtained has a good statistical performance, with a determination coefficient ( r2) of 0.74. We propose new calibration procedures formulated to include the full climate space of the modelled taxa, as well as to account for uphill pollen transport in the high mountains and for human activity.


2016 ◽  
Author(s):  
Frazer Matthews-Bird ◽  
Stephen J. Brooks ◽  
Philip B. Holden ◽  
Encarni Montoya ◽  
William D . Gosling

Abstract. Presented here is the first chironomid calibration dataset for tropical South America. Surface sediments were collected from 59 lakes across Bolivia (15 lakes), Peru (32 lakes) and Ecuador (12 lakes) between 2004 and 2013 over an altitudinal gradient from 150 m above sea level (a.s.l) to 4655 m a.s.l, between 0-­17°S and 64-­78°W. The study sites cover a mean annual temperature (MAT) gradient of 25°C. In total, 55 chironomid taxa were identified in the 59 calibration data-­set lakes. When used as a single explanatory variable, MAT explains 12.9% of the variance (λ1/λ2= 1.431). Two inference models were developed using weighted averaging and Bayesian methods. The best performing model using conventional statistical methods was a WA (inverse) model (R2jack= 0.890, RMSEPjack= 2.404, Mean biasjack= -­0.017, Max biasjack= 4.665). The Bayesian method produced a model with R2jack= 0.909, RMSEPjack= 2.373, Mean biasjack= 0.598, Max biasjack= 3.158. Both models were used to infer past temperatures from a c. 3000 yr record from the tropical Andes of Ecuador, Laguna Pindo. Inferred temperatures fluctuated around modern day conditions but showed significant departures at certain intervals (c. 1600 cal yr BP; c. 3000-­2500 cal yr BP). Both methods (WA/Bayesian) showed similar patterns of temperature variability; however, the magnitude of fluctuations differed. In general the WA method was more variable often inferring unrealistically cold temperatures (c. -­7±2.5°C relative to the modern). The Bayesian method provided temperature anomaly estimates for cool periods that lay within the expected range of the Holocene (c. -­3±3.4°C). The chironomid-­based MAT recon struction from the Laguna Pindo fossil record suggests that periods of low solar output not only affect the tropics through changes in precipitation, but also directly affect tropical temperatures. Inferred temperatures were 2-­3°C colder relative to the modern during the widely recognised 3500-­2500 cal yr BP cooling event. Long-­term cooling during the late-­Holocene culminating in the Little Ice Age (LIA) is not apparent in the Laguna Pindo record. A cooling by 1-­2°C relative to the modern during the LIA is recorded in a single fossil sa


2021 ◽  
Author(s):  
Sandra Gorsic ◽  
Alberto Muñoz-Torrero Manchado ◽  
Jérôme Lopez-Saez ◽  
Simon K. Allen ◽  
Juan A. Ballesteros-Canovas ◽  
...  

<p>With the substantial glacier mass reduction projected by the end of the century, the formation and rise of periglacial lakes has to be expected. Even though these changes often occur in remote areas, they can nevertheless have catastrophic impacts on populations and infrastructure through processes such as glacial lake outburst floods (GLOF). GLOFs are the result of complex geomorphic changes and subject to various timescales, thus urging the need for a multidimensional approach. The present study combines two approaches to analyze natural hazards in the secluded San Rafael National Park in Chilean Patagonia (North Patagonian Icefield). The Grosse glacier outlet was chosen after interpreting satellite imagery and historical pictures showing a historical emptying of a lateral lake, which was also supported by local testimonies. Dendrogeomorphology was primarily used with an automatic detection approach to identify possible dates of occurrence of past GLOFs at the Grosse outlet. A total of 105 disturbed Nothofagus trees were sampled highlighting 6 event years between 1958 and 2011. The second method aimed at complementing the tree-ring-based findings with UAV imagery acquired during fieldwork and the mapping of geomorphic evidence of past GLOFs. Huge boulders and deposits are one of the signs recognized as remnants of past lake outbursts and were thus used to differentiate small, rainfall-induced floods from high magnitude events. More precisely, through an object-based strategy, we mapped deposits and extrapolated a theoretical flow orientation. Whereas the first method allowed to select dates of potential events, the second facilitated identification and mapping of the spatial extent of past high-energy events. Analysis of imagery also allowed detection of the occurrence of a 200-m wide breach in the frontal moraine as well as the vanishing of a lateral lake estimated to be 1.8 × 10<sup>6 </sup>m<sup>2</sup> in the 1950s, which we date to 1958 using tree-ring records. When used together the two approaches can represent a valuable contribution to historical records and help future assessments of natural hazard at Grosse glacier, but also in other high-mountain environments.</p>


2021 ◽  
Vol 4 (2) ◽  
Author(s):  
Jacqueline Eng ◽  
Mark Aldenderfer

Anthropological research in the high-elevation regions of northwestern Nepal offers insights into the populationhistory of the Himalayan arc through a multi- and interdisciplinary approach that includes not only archaeologicaldata and historic and ethnographic accounts but also genomic, isotopic, and bioarchaeologicaldata, as well as innovative use of thermal niche modeling for paleoclimate reconstruction. Together these linesof evidence have allowed us to address project questions about human settlement into the region, including(1) sources of population movements into high-elevation environments of the Himalayan arc and (2) bioculturaladaptations to high-mountain environments. In this paper we compare research at several communalmortuary sites, each with a rich assemblage of material culture and human burials: Mebrak (400 B.C.–A.D. 50),Kyang (400–175 B.C.), and Samdzong (A.D. 450–650), as well as intriguing insights from finds in the earlier (ca.1250–450 B.C.) sites of Lubrak, Chokhopani, and Rhirhi. Our genomic findings demonstrate population originsfrom the Tibetan plateau, despite South Asian material culture recovered in early sites. Bioarchaeological findingsof low frequencies of non-specific stress and trauma indicate successful biocultural adaptation to highaltitudeconditions of hypoxia, cold, and low resource availability, potentially through buffering from exchangenetworks and local cultural practices, alongside high-altitude selected alleles. An integrative, multidisciplinaryapproach thus offers significantly greater opportunities for developing a more nuanced understanding of thepast processes of migration, settlement, and biocultural adaptation in the region. La investigación antropológica de las alturas del noroeste de Nepal nos proporciona conocimientos de la historiade la población del arco Himalaya a través de un enfoque multidisciplinario e interdisciplinario que incluyeno solamente datos arqueológicos y relatos históricos y etnográficos, sino también datos genómicos, isotópicos,y bioarqueológicos, tanto como uso innovador del modelado del nicho térmico para la reconstrucción paleoclimática.En conjunto, estas líneas de evidencia nos han permitido abordar temas sobre el asentamiento humanade la región, como: (1) los orígenes del movimiento hacia ambientes en las alturas del arco del Himalaya;y (2) las adaptaciones bioculturales necesarias para vivir en las alturas. En este artículo comparamos las investigacionesde varios mortuorios comunales que ofrecen conjuntos abundantes de entierros humanos y artefactosrelacionados: Mebrak (400 a.C.–d.C. 50), Kyang (400–175 a.C.), and Samdzong (d.C. 450–650), así como loshallazgos intrigantes de sitios anteriores (ca. 1250–450 a.C.) de Lubrak, Chokhopani, y Rhirhi. Nuestros datosgenómicos sugieren orígenes de le población del altiplano tibetano, a pesar del material que deriva del sur de Asia que se ha recuperado de los sitios mas tempranos. Los hallazgos bioarqueológicos demuestran niveles bajosde estrés y trauma inespecífico, y sugieren éxito en adaptación biocultural, a pesar de las condiciones de hipoxia,frio, y los recursos escasos en este ambiente. Es posible que alelos seleccionados a las alturas, junto con sistemasde intercambio y las costumbres locales contribuyeron al éxito de la adaptación. Por lo tanto, un enfoque multidisciplinarioque integra todas las evidencias ofrece una comprensión mas detallada de los procesos de migración,asentamiento, y adaptación biocultural de la región.


Author(s):  
M. Rutzinger ◽  
M. Bremer ◽  
B. Höfle ◽  
M. Hämmerle ◽  
R. Lindenbergh ◽  
...  

The 2nd international summer school “Close-range sensing techniques in Alpine terrain” was held in July 2017 in Obergurgl, Austria. Participants were trained in selected close-range sensing methods, such as photogrammetry, laser scanning and thermography. The program included keynotes, lectures and hands-on assignments combining field project planning, data acquisition, processing, quality assessment and interpretation. Close-range sensing was applied for different research questions of environmental monitoring in high mountain environments, such as geomorphologic process quantification, natural hazard management and vegetation mapping. The participants completed an online questionnaire evaluating the summer school, its content and organisation, which helps to improve future summer schools.


2013 ◽  
Vol 10 (4) ◽  
pp. 4369-4395 ◽  
Author(s):  
S. Cauvy-Fraunié ◽  
T. Condom ◽  
A. Rabatel ◽  
M. Villacis ◽  
D. Jacobsen ◽  
...  

Abstract. Worldwide, the rapid shrinking of glaciers in response to ongoing climate change is currently modifying the glacial meltwater contribution to hydrosystems in glacierized catchments. Assessing the contribution of glacier run-off to stream discharge is therefore of critical importance to evaluate potential impact of glacier retreat on water quality and aquatic biota. This task has challenged both glacier hydrologists and ecologists over the last 20 yr due to both structural and functional complexity of the glacier-stream system interface. Here we propose a new methodological approach based on wavelet analyses on water depth time series to determine the glacial influence in glacierized catchments. We performed water depth measurement using water pressure loggers over ten months in 15 stream sites in two glacier-fed catchments in the Ecuadorian Andes (> 4000 m). We determined the global wavelet spectrum of each time series and defined the Wavelet Glacier Signal (WGS) as the ratio between the global wavelet power spectrum value at a 24 h-scale and its corresponding significance value. To test the relevance of the WGS we compared it with the percentage of the glacier cover in the catchments, a metric of glacier influence often used in the literature. We then tested whether one month data could be sufficient to reliably determine the glacial influence. As expected we found that the WGS of glacier-fed streams decreased downstream with the increasing of non-glacial tributaries. We also found that the WGS and the percentage of the glacier cover in the catchment were significantly positively correlated and that one month data was sufficient to identify and compare the glacial influence between two sites, provided that the water level time series were acquired over the same period. Furthermore, we found that our method permits to detect glacial signal in supposedly non-glacial sites, thereby evidencing glacial meltwater infiltrations. While we specifically focused on the tropical Andes in this paper, our approach to determine glacier influence would be applicable to temperate and arctic glacierized catchments. The WGS therefore appears as a powerful and cost effective tool to better understand the hydrological links between glaciers and hydrosystems and assess the consequences of rapid glacier melting.


2017 ◽  
Vol 56 (6) ◽  
pp. 1707-1729 ◽  
Author(s):  
Marlis Hofer ◽  
Johanna Nemec ◽  
Nicolas J. Cullen ◽  
Markus Weber

AbstractThis study explores the potential of different predictor strategies for improving the performance of regression-based downscaling approaches. The investigated local-scale target variables are precipitation, air temperature, wind speed, relative humidity, and global radiation, all at a daily time scale. Observations of these target variables are assessed from three sites in close proximity to mountain glaciers: 1) the Vernagtbach station in the European Alps, 2) the Artesonraju measuring site in the tropical South American Andes, and 3) the Mount Brewster measuring site in the Southern Alps of New Zealand. The large-scale dataset being evaluated is the ERA-Interim dataset. In the downscaling procedure, particular emphasis is put on developing efficient yet not overfit models from the limited information in the temporally short (typically a few years) observational records of the high mountain sites. For direct (univariate) predictors, optimum scale analysis turns out to be a powerful means to improve the forecast skill without the need to increase the downscaling model complexity. Yet the traditional (multivariate) predictor sets show generally higher skill than the direct predictors for all variables, sites, and days of the year. Only in the case of large sampling uncertainty (identified here to particularly affect observed precipitation) is the use of univariate predictor options justified. Overall, the authors find a range in forecast skill among the different predictor options applied in the literature up to 0.5 (where 0 indicates no skill, and 1 represents perfect skill). This highlights that a sophisticated predictor selection (as presented in this study) is essential in the development of realistic, local-scale scenarios by means of downscaling.


Author(s):  
Yangji Doma Sherpa ◽  
A. John Sinclair ◽  
Thomas Henley

The Himalayan region of India is experiencing rapid development in tourism, agriculture, highway construction and hydroelectric dam construction. This research considered the role of the public both within and outside of development decision-making processes in these high mountain environments using the proposed Himalayan Ski Village (HSV) in Manali as a case study. The qualitative data revealed that there has been an extensive array of public participation activity related to the HSV project over approximately 10 years. Very little of this activity has evolved, however, through the formal decision-making process. Rather, most participation activities, such as general house meetings, objection letters, public rallies, court cases against the proposed project, and a religious congregation were instigated by the public to protest the proposed development. The findings also show that involvement in the participatory activities undertaken by the public and project proponent fostered instrumental and communicative learning outcomes.


Sign in / Sign up

Export Citation Format

Share Document