scholarly journals Anterior Temporal Lobe Tracks the Formation of Prejudice

2017 ◽  
Vol 29 (3) ◽  
pp. 530-544 ◽  
Author(s):  
Hugo J. Spiers ◽  
Bradley C. Love ◽  
Mike E. Le Pelley ◽  
Charlotte E. Gibb ◽  
Robin A. Murphy

Despite advances in understanding the brain structures involved in the expression of stereotypes and prejudice, little is known about the brain structures involved in their acquisition. Here, we combined fMRI, a task involving learning the valence of different social groups, and modeling of the learning process involved in the development of biases in thinking about social groups that support prejudice. Participants read descriptions of valenced behaviors performed by members of novel social groups, with majority groups being more frequently encountered during learning than minority groups. A model-based fMRI analysis revealed that the anterior temporal lobe tracked the trial-by-trial changes in the valence associated with each group encountered in the task. Descriptions of behavior by group members that deviated from the group average (i.e., prediction errors) were associated with activity in the left lateral PFC, dorsomedial PFC, and lateral anterior temporal cortex. Minority social groups were associated with slower acquisition rates and more activity in the ventral striatum and ACC/dorsomedial PFC compared with majority groups. These findings provide new insights into the brain regions that (a) support the acquisition of prejudice and (b) detect situations in which an individual's behavior deviates from the prejudicial attitude held toward their group.

2005 ◽  
Vol 187 (6) ◽  
pp. 500-509 ◽  
Author(s):  
Amélie M. Achim ◽  
Martin Lepage

BackgroundNumerous studies have examined the neural correlates of episodic memory deficits in schizophrenia, yielding both consistencies and discrepancies in the reported patterns of results.AimsTo identify in schizophrenia the brain regions in which activity is consistently abnormal across imaging studies of memory.MethodData from 18 studies meeting the inclusion criteria were combined using a recently developed quantitative meta-analytic approach.ResultsRegions of consistent differential activation between groups were observed in the left inferior prefrontal cortex, medial temporal cortex bilaterally, left cerebellum, and in other prefrontal and temporal lobe regions. Subsequent analyses explored memory encoding and retrieval separately and identified between-group differences in specific prefrontal and medial temporal lobe regions.ConclusionsBeneath the apparent heterogeneity of published findings on schizophrenia and memory, a consistent and robust pattern of group differences is observed as a function of memory processes.


2021 ◽  
pp. 153537022110568
Author(s):  
Natalia V Bobkova ◽  
Daria Y Zhdanova ◽  
Natalia V Belosludtseva ◽  
Nikita V Penkov ◽  
Galina D Mironova

Here, we found that functionally active mitochondria isolated from the brain of NMRI donor mice and administrated intranasally to recipient mice penetrated the brain structures in a dose-dependent manner. The injected mitochondria labeled with the MitoTracker Red localized in different brain regions, including the neocortex and hippocampus, which are responsible for memory and affected by degeneration in patients with Alzheimer's disease. In behavioral experiments, intranasal microinjections of brain mitochondria of native NMRI mice improved spatial memory in the olfactory bulbectomized (OBX) mice with Alzheimer’s type degeneration. Control OBX mice demonstrated loss of spatial memory tested in the Morris water maze. Immunocytochemical analysis revealed that allogeneic mitochondria colocalized with the markers of astrocytes and neurons in hippocampal cell culture. The results suggest that a non-invasive route intranasal administration of mitochondria may be a promising approach to the treatment of neurodegenerative diseases characterized, like Alzheimer's disease, by mitochondrial dysfunction.


2021 ◽  
Author(s):  
Rahat Hasan ◽  
Jack Humphrey ◽  
Conceicao Bettencourt ◽  
Tammaryn Lashley ◽  
Pietro Fratta ◽  
...  

Frontotemporal lobar degeneration (FTLD) is a group of heterogeneous neurodegenerative disorders affecting the frontal and temporal lobes of the brain. Nuclear loss and cytoplasmic aggregation of the RNA-binding protein TDP-43 represents the major FTLD pathology, known as FTLD-TDP. To date, there is no effective treatment for FTLD-TDP due to an incomplete understanding of the molecular mechanisms underlying disease development. Here we compared post-mortem tissue RNA-seq transcriptomes from the frontal cortex, temporal cortex and cerebellum between 28 controls and 30 FTLD-TDP patients to profile changes in cell-type composition, gene expression and transcript usage. We observed downregulation of neuronal markers in all three regions of the brain, accompanied by upregulation of microglia, astrocytes, and oligodendrocytes, as well as endothelial cells and pericytes, suggesting shifts in both immune activation and within the vasculature. We validate our estimates of neuronal loss using neuropathological atrophy scores and show that neuronal loss in the cortex can be mainly attributed to excitatory neurons, and that increases in microglial and endothelial cell expression are highly correlated with neuronal loss. All our analyses identified a strong involvement of the cerebellum in the neurodegenerative process of FTLD-TDP. Altogether, our data provides a detailed landscape of gene expression alterations to help unravel relevant disease mechanisms in FTLD.


2020 ◽  
Author(s):  
Dongjae Kim ◽  
Jaeseung Jeong ◽  
Sang Wan Lee

AbstractThe goal of learning is to maximize future rewards by minimizing prediction errors. Evidence have shown that the brain achieves this by combining model-based and model-free learning. However, the prediction error minimization is challenged by a bias-variance tradeoff, which imposes constraints on each strategy’s performance. We provide new theoretical insight into how this tradeoff can be resolved through the adaptive control of model-based and model-free learning. The theory predicts the baseline correction for prediction error reduces the lower bound of the bias–variance error by factoring out irreducible noise. Using a Markov decision task with context changes, we showed behavioral evidence of adaptive control. Model-based behavioral analyses show that the prediction error baseline signals context changes to improve adaptability. Critically, the neural results support this view, demonstrating multiplexed representations of prediction error baseline within the ventrolateral and ventromedial prefrontal cortex, key brain regions known to guide model-based and model-free learning.One sentence summaryA theoretical, behavioral, computational, and neural account of how the brain resolves the bias-variance tradeoff during reinforcement learning is described.


PLoS ONE ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. e0244892
Author(s):  
Jessica Zilli ◽  
Monika Kressin ◽  
Anne Schänzer ◽  
Marian Kampschulte ◽  
Martin J. Schmidt

Cats, similar to humans, are known to be affected by hippocampal sclerosis (HS), potentially causing antiepileptic drug (AED) resistance. HS can occur as a consequence of chronic seizure activity, trauma, inflammation, or even as a primary disease. In humans, temporal lobe resection is the standardized therapy in patients with refractory temporal lobe epilepsy (TLE). The majority of TLE patients are seizure free after surgery. Therefore, the purpose of this prospective cadaveric study is to establish a surgical technique for hippocampal resection in cats as a treatment for AED resistant seizures. Ten cats of different head morphology were examined. Pre-surgical magnetic resonance imaging (MRI) and computed tomography (CT) studies of the animals’ head were carried out to complete 3D reconstruction of the head, brain, and hippocampus. The resected hippocampal specimens and the brains were histologically examined for tissue injury adjacent to the hippocampus. The feasibility of the procedure, as well as the usability of the removed specimen for histopathological examination, was assessed. Moreover, a micro-CT (mCT) examination of the brain of two additional cats was performed in order to assess temporal vasculature as a reason for possible intraoperative complications. In all cats but one, the resection of the temporal cortex and the hippocampus were successful without any evidence of traumatic or vascular lesions in the surrounding neurovascular structures. In one cat, the presence of mechanical damage (a fissure) of the thalamic surface was evident in the histopathologic examination of the brain post-resection. All hippocampal fields and the dentate gyrus were identified in the majority of the cats via histological examination. The study describes a new surgical approach (partial temporal cortico-hippocampectomy) offering a potential treatment for cats with clinical and diagnostic evidence of temporal epilepsy which do not respond adequately to the medical therapy.


Molecules ◽  
2019 ◽  
Vol 24 (9) ◽  
pp. 1721 ◽  
Author(s):  
Cezary Grochowski ◽  
Eliza Blicharska ◽  
Jacek Bogucki ◽  
Jędrzej Proch ◽  
Aleksandra Mierzwińska ◽  
...  

Introduction: Alcohol overuse may be related to increased aluminum (Al) exposure, the brain accumulation of which contributes to dementia. However, some reports indicate that silicon (Si) may have a protective role over Al-induced toxicity. Still, no study has ever explored the brain content of Al and Si in alcoholic use disorder (AUD). Materials and methods: To fill this gap, the present study employed inductively coupled plasma optical emission spectrometry to investigate levels of Al and Si in 10 brain regions and in the liver of AUD patients (n = 31) and control (n = 32) post-mortem. Results: Al content was detected only in AUD patients at mean ± SD total brain content of 1.59 ± 1.19 mg/kg, with the highest levels in the thalamus (4.05 ± 12.7 mg/kg, FTH), inferior longitudinal fasciculus (3.48 ± 9.67 mg/kg, ILF), insula (2.41 ± 4.10 mg/kg) and superior longitudinal fasciculus (1.08 ± 2.30 mg/kg). Si content displayed no difference between AUD and control, except for FTH. Positive inter-region correlations between the content of both elements were identified in the cingulate cortex, hippocampus, and ILF. Conclusions: The findings of this study suggest that AUD patients may potentially be prone to Al-induced neurodegeneration in their brain—although this hypothesis requires further exploration.


Insects ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 886
Author(s):  
Silvana Piersanti ◽  
Manuela Rebora ◽  
Gianandrea Salerno ◽  
Sylvia Anton

Dragonflies are hemimetabolous insects, switching from an aquatic life style as nymphs to aerial life as adults, confronted to different environmental cues. How sensory structures on the antennae and the brain regions processing the incoming information are adapted to the reception of fundamentally different sensory cues has not been investigated in hemimetabolous insects. Here we describe the antennal sensilla, the general brain structure, and the antennal sensory pathways in the last six nymphal instars of Libellula depressa, in comparison with earlier published data from adults, using scanning electron microscopy, and antennal receptor neuron and antennal lobe output neuron mass-tracing with tetramethylrhodamin. Brain structure was visualized with an anti-synapsin antibody. Differently from adults, the nymphal antennal flagellum harbors many mechanoreceptive sensilla, one olfactory, and two thermo-hygroreceptive sensilla at all investigated instars. The nymphal brain is very similar to the adult brain throughout development, despite the considerable differences in antennal sensilla and habitat. Like in adults, nymphal brains contain mushroom bodies lacking calyces and small aglomerular antennal lobes. Antennal fibers innervate the antennal lobe similar to adult brains and the gnathal ganglion more prominently than in adults. Similar brain structures are thus used in L. depressa nymphs and adults to process diverging sensory information.


2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Xueyan Fu ◽  
Will Patterson ◽  
Gregory Dolnikowski ◽  
Bess Dawson-Hughes ◽  
Martha Morris ◽  
...  

Abstract Objectives Very little is known about the forms of vitamin D and vitamin K in the human brain. The objective of this study is to evaluate concentrations of vitamin D and vitamin K forms in human brain and their correlations across four human brain regions. Methods Vitamin D [D3, 25(OH)D and 1,25(OH)2D] and vitamin K [phylloquinone and menaquinone-4 (MK4)] concentrations were measured by LC/MS/MS and HPLC, respectively, in four brain regions from post-mortem samples obtained from participants in the Rush Memory and Aging Project (n = 130, mean age 82 yrs, 81% female). The brain regions analyzed were the mid-frontal cortex (MF) and mid-temporal cortex (MT) [two regions important for memory in Alzheimer's Disease (AD)], the cerebellum (CR, a region not affected by AD), and the anterior watershed white matter (AWS, a region associated with vascular disease). The correlations among the vitamin forms across brain regions were calculated using Spearman rank order correlation coefficients. Significance was set at P < 0.001. Results The average concentrations of vitamin D3, 25(OH)D and MK4 were 604 pg/g, 535 pg/g, and 3.4 pmol/g, respectively. 25(OH)D and MK4 were detected in >95% of the brain samples. Nearly 92% of 1,25(OH)2D and 80% of phylloquinone samples had concentrations below the limit of assay detection (LOD) 1,25(OH)2D = 20 ng/g, phylloquinone = 0.1 pmol/g). Vitamin D3 and 25(OH)D concentrations were positively correlated across all four regions (all Spearman r ≥ 0.78, P < 0.0001). The 1,25(OH)2D was significantly correlated between the MF and CR regions only (Spearman r = 0.30, P < 0.001, all other P ≥ 0.002). MK4 and PK were positively correlated across the four regions studied (MK4 all Spearman r ≥ 0.78, phylloquinone r ≥ 0.49, all P < 0.001). Conclusions To the best of our knowledge, this study is the first evaluation of the concentrations of vitamin D and vitamin K forms in multiple regions of the human brain. Overall, the vitamin D and vitamin K forms were each positively correlated across the four brain regions studied. Future studies are needed to clarify the roles of these nutrients in AD and dementia. Funding Sources National Institute of Aging.


2000 ◽  
Vol 12 (supplement 2) ◽  
pp. 106-117 ◽  
Author(s):  
Catherine M. Arrington ◽  
Thomas H. Carr ◽  
Andrew R. Mayer ◽  
Stephen M. Rao

Objects play an important role in guiding spatial attention through a cluttered visual environment. We used event-related functional magnetic resonance imaging (ER-fMRI) to measure brain activity during cued discrimination tasks requiring subjects to orient attention either to a region bounded by an object (object-based spatial attention) or to an unbounded region of space (location-based spatial attention) in anticipation of an upcoming target. Comparison between the two tasks revealed greater activation when attention selected a region bounded by an object. This activation was strongly lateralized to the left hemisphere and formed a widely distributed network including (a) attentional structures in parietal and temporal cortex and thalamus, (b) ventral-stream object processing structures in occipital, inferior-temporal, and parahippocampal cortex, and (c) control structures in medial-and dorsolateral-prefrontal cortex. These results suggest that object-based spatial selection is achieved by imposing additional constraints over and above those processes already operating to achieve selection of an unbounded region. In addition, ER-fMRI methodology allowed a comparison of validly versus invalidly cued trials, thereby delineating brain structures involved in the reorientation of attention after its initial deployment proved incorrect. All areas of activation that differentiated between these two trial types resulted from greater activity during the invalid trials. This outcome suggests that all brain areas involved in attentional orienting and task performance in response to valid cues are also involved on invalid trials. During invalid trials, additional brain regions are recruited when a perceiver recovers from invalid cueing and reorients attention to a target appearing at an uncued location. Activated brain areas specific to attentional reorientation were strongly right-lateralized and included posterior temporal and inferior parietal regions previously implicated in visual attention processes, as well as prefrontal regions that likely subserve control processes, particularly related to inhibition of inappropriate responding.


2019 ◽  
Vol 33 (1) ◽  
pp. 30-36 ◽  
Author(s):  
Victor Schmidbauer ◽  
Silvia Bonelli

AbstractEpilepsy is frequently accompanied by severe cognitive side effects. Temporal lobe epilepsy (TLE), and even successful surgical treatment, may affect cognitive function, in particular language as well as verbal and visual memory function. Epilepsy arising from the temporal lobe can be controlled surgically in up to 70% of patients. The goals of epilepsy surgery are to remove the brain areas generating the seizures without causing or aggravating neuropsychological deficits. This requires accurate localization of the brain areas generating the seizures (“epileptogenic zone”) and the areas responsible for motor and cognitive functions, such as language and memory (“essential brain regions”) during presurgical evaluation. In the past decades, functional magnetic resonance imaging (fMRI) has been increasingly used to noninvasively lateralize and localize not only primary motor and somatosensory areas, but also brain areas that are involved in everyday language and memory processes. The imaging modality also shows potential for predicting the effects of temporal lobe resection on language and memory function. Together with other MRI modalities, cognitive fMRI is a promising tool to improve surgical strategies tailored to individual patients with regard to functional outcome, by virtue of definition of epileptic cerebral areas that need to be resected and eloquent areas that need to be spared.The aim of this review is to provide an overview of recent developments and practical recommendations for the clinical use of cognitive fMRI in TLE.


Sign in / Sign up

Export Citation Format

Share Document