Progressive Collapse Analysis of Reinforced Concrete Frames with Unreinforced Masonry Infill Walls considering In-Plane/Out-of-Plane Interaction

2015 ◽  
Vol 31 (2) ◽  
pp. 921-943 ◽  
Author(s):  
Khalid M. Mosalam ◽  
Selim Günay

Reinforced concrete (RC) frames with unreinforced masonry (URM) infill walls are commonly used in seismic regions around the world. It is recognized that many buildings of this type perform poorly during earthquakes. Therefore, proper modeling of the infill walls and their effect on RC frames is essential to evaluate the seismic performance of such buildings and to select adequate retrofit methods. Using damage observations of RC buildings with URM infill walls from recent earthquakes, this paper presents a new approach to consider in-plane/out-of-plane interaction of URM infill walls in progressive collapse simulations. In addition, the infill wall effect to induce shear failure of columns is simulated with a nonlinear shear spring modeling approach. The research endeavor is accompanied by implementation of the developed modeling aspects in the publicly available open-source computational platform OpenSees for immediate access by structural engineers and researchers.

Author(s):  
Ali Al-Maliki ◽  
◽  
Mohammed Sahib Mohammed ◽  
Maha Al-Soudani ◽  
Haifaa Nasser Husein ◽  
...  

The infill walls may lose their positive effects during the first stages of earthquakes, either by leaving their plane or through breakage. That is why it is common to strengthen these walls before design earthquakes or to repair and strengthen them after suffering slight or moderate damage due to the occurrence of an earthquake. In this study, the effect of adding and strengthening these walls on the structural behavior of reinforced concrete structures was investigated. For this purpose, the infill walls were strengthened with a single mesh of reinforcement and covered with plaster. Five one-story, single bay and ½ scaled reinforced concrete frames were cast, one was built without infill, the second with a bare infill wall, and the other three with strengthened infill walls with anchorage of different diameters. All these specimens were tested under cyclic loading type reverse. The tests resulted in important relationships and curves, including the lateral load-lateral displacement, envelope curve-lateral load and lateral displacement, as well as stiffness- lateral displacement and others. Through these results, the effect of adding infill walls and the strengthening procedure of these walls on the structural behavior of the structures was discussed.


2020 ◽  
Vol 6 (12) ◽  
pp. 2397-2415
Author(s):  
Muhammad Umar ◽  
Syed Azmat Ali Shah ◽  
Khan Shahzada ◽  
Muhammad Tayyab Naqash ◽  
Wajid Ali

Infill walls increase the strength and stiffness of the reinforced concrete frames, but they usually are not considering in design. However, when the infills are considered in the design, the opening for doors/windows necessitates investigation as well. This research work aims to investigate the effect of perforations (openings) in the infill walls on the performance of infilled RC frames, in other words, this research investigates the number of infill walls in infilled RC frames. Based on the current construction practices in Pakistan, two full scales perforated infilled RC frames were constructed in the laboratory. One infilled RC frame has an eccentric door and window (specimen-1) while the other has only window at its centre (specimen-2). Both the specimens were tested against reverse cyclic loading (quasi-static test). From the experimental testing, it was found that infilled RC frame having less amount of opening in infill wall has more resistance to lateral loads, have more stiffness and dissipated higher energy as compared to infilled RC frame having a significant size of the opening in infill wall. Similarly, displacement ductility (µD) and Response modification factor (R) also depend on the quantity of opening in infill wall in infilled RC frame. Doi: 10.28991/cej-2020-03091625 Full Text: PDF


2021 ◽  
Vol 20 (2) ◽  
pp. 371-381
Author(s):  
Atabak Pourmohammad Sorkhab ◽  
◽  
Mesut Küçük ◽  
Ali Sari ◽  
◽  
...  

In this study, the out-of-plane response of infill walls that are widely used in Turkey and the surrounding regions were experimentally investigated. Several out-of-plane wall tests were performed in the laboratory, with the walls specimens produced with lateral hollow clay bricks (LHCB) and different mortar qualities. The walls were tested in their out-of-plane (OOP) direction under static load conditions and evaluated based on the load-bearing and energy dissipation capacities, crack propagations, mortar strengths, and initial stiffnesses. These walls are experimentally investigated to understand the effects of the mortar strength on the infill wall structural behaviors and to assess the effectiveness of the out-of-plane strength formulations. It was found that when the mortar strength is low, the first major crack occurs at the mortar, however, because of the arch mechanism efficiency in this situation the OOP load-carrying and energy dissipation capacities of unreinforced walls can be significantly increased. When the first major crack in the wall occurs in the brick itself, the arc mechanism is provided with delicate sections in the brick, which leads to strength decreasing in the walls. In this case, excessive deviations occur in the out-of-plane strength formulations estimates. This study shows that the arc mechanism, the damage start region and progress can change significantly unreinforced masonry (URM) infill walls behaviors.


Author(s):  
Ziad Azzi ◽  
Caesar Abi Shdid

The majority of new and existing building inventories in the Middle East consist of reinforced concrete skeletal structures with outer shells composed of unreinforced masonry infill walls. In the absence of any mandatory seismic design requirements, these buildings will sustain catastrophic damage when exposed to high seismic activity. Investigating the behavior of such infill walls when exposed to ground motion is therefore an important topic. Experimental tests using shake table out-of-plane ground motion of the 1940 El Centro earthquake displacement are conducted on 3:10 scaled specimens of a single story reinforced concrete frame with a masonry infill wall in between. The test specimens are constructed with the same materials and construction practices commonly used in the region. Displacements and strains are compared with a finite element model of the frame. Moreover, the observed overall behavior of the infill is compared to that of the computer model. The recorded strains in the mortar joints exceeded cracking limits, whereas the overall stability of the wall in out-of-plane bending was not compromised. Recommendations on the use of these structural elements are formulated.


Author(s):  
Yung-Hsin Yeh ◽  
Wen-I Liao

This paper presents the results of the experimental and analytical investigations conducted on four 0.8 scale 2-story one bay ductile reinforced concrete frames with infill nonstructural walls subjected to cyclically increasing loads. The material properties and the member sizes of beams and columns in the four RC frame specimens are identical, but with different types of infill nonstructural wall. These four frames are the pure frame, frame with short column, frame with short beam and frame with wing walls. The four RC frame specimens were designed and constructed according to the general prototype building structures in Taiwan. Test results indicate that the ductility behavior of the frames with infill wall is similar to those of the pure frame. The ultimate base shear strength of the frames with infill walls is higher than those of the pure frame. Analytical results show that the proposed simplified multi-linear beam-column element implemented in a general purpose structural analysis program can accurately simulate the cyclic responses of the RC frame specimen incorporating the elastic flexural stiffness computations suggested by the model building codes.


Polymers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1577
Author(s):  
Ahmet Tugrul Akyildiz ◽  
Alicja Kowalska-Koczwara ◽  
Łukasz Hojdys

This paper is aimed at investigating the usage of flexible joints in masonry infilled walls surrounded by reinforced concrete (RC) frames. For this purpose, a real-size specimen was numerically created and exposed to the seismic loads. In order to evaluate both in-plane and out-of-plane performances of the infill walls, the system was chosen as a box shaped three-dimensional structure. In total, three different one-story constructions, which have single bays in two perpendicular directions, were modeled. The first type is the bare-frame without the infill walls, which was determined as a reference system. The second and third types of buildings are conventional mortar joint and PolyUrethane Flexible Joint (PUFJ) implemented ones, respectively. The influence of these joints on the material level are investigated in detail. Furthermore, general building dynamic characteristics were extracted by means of acceleration and displacement results as well as frequency domain mode shapes. Analyses revealed that PUFJ implementation on such buildings has promising outcomes and helps to sustain structural stability against the detrimental effects of earthquakes.


2021 ◽  
Vol 227 ◽  
pp. 111438
Author(s):  
Mariano Di Domenico ◽  
Maria Teresa De Risi ◽  
Paolo Ricci ◽  
Gerardo M. Verderame ◽  
Gaetano Manfredi

2021 ◽  
Author(s):  
Xu Huang ◽  
Alex Brodsky

Abstract This paper proposes a multi-platform simulation method for seismic performance assessment of masonry infilled reinforced concrete (RC) frames, especially for those who tend to fail in shear during an earthquake due to inadequate reinforcing details. The method is based on a micro-macro modeling approach where a detailed finite element (FE) model of the RC frame is incorporated with a strut model of the infill wall. It takes advantage of the strut model in terms of computational efficiency and the FE model based on the Modified Compression Field Theory (MCFT) to capture the nonlinear behaviour of the RC frame with explicit modeling of the beam-column joint failure and shear failure of the frame. The proposed method is validated against previously tested frames subjected to lateral loads, and its advantages over the conventional struct models are demonstrated through both quasi-static and dynamic analyses.


Sign in / Sign up

Export Citation Format

Share Document