scholarly journals On California Structural Steel Seismic Design

1986 ◽  
Vol 2 (4) ◽  
pp. 703-727 ◽  
Author(s):  
Egor P. Popov

A number of new code developments, largely initiated in California, are taking place in the USA for the seismic design of steel structures. The principal ones are reviewed and commented upon in the paper. Key experimental support for some of the changes is indicated. Major attention is directed to the three main types of steel construction: moment-resisting frames, concentrically braced steel frames, and, the relatively new method for seismic design, eccentric bracing. Some of the proposed and possible practical improvements in moment-resisting connections are given; the reasons for some concern over the use of concentrically braced frames for severe seismic applications are discussed; and a brief overview on the application of eccentrically braced steel frames is presented. The paper concludes with a few remarks on future trends and needs in structural steel seismic design.

Author(s):  
Egor P. Popov

A number of new code developments, largely initiated in California, are taking place in the USA for the seismic design of steel structures. 
The principal ones are reviewed and commented upon in the paper. Key experimental support for some of the changes is indicated. Major attention is directed to the three main types of steel construction: moment resisting frames, concentrically braced steel frames, and, the relatively new method for seismic design, eccentric bracing. Some of the proposed and possible practical improvements in moment-resisting connections are given: the reasons for some concern over the use of concentrically braced frames for severe seismic applications are discussed; and a brief overview on the application of eccentrically braced steel frames is presented. The paper concludes with a few remarks on future trends and needs in structural
steel seismic design.


1996 ◽  
Vol 23 (3) ◽  
pp. 727-756 ◽  
Author(s):  
Robert Tremblay ◽  
Andre Filiatrault ◽  
Michel Bruneau ◽  
Masayoshi Nakashima ◽  
Helmut G. L. Prion ◽  
...  

Past and current seismic design provisions for steel structures in Japan are presented and compared with Canadian requirements. The performance of steel framed structures during the January 17, 1995, Hyogo-ken Nanbu earthquake is described. Numerous failures and examples of inadequate behaviour could be observed in buildings of various ages, sizes, and heights, and braced with different structural systems. In moment resisting frames, the damage included failures of beams, columns, beam-to-column connections, and column bases. Fracture of bracing members or their connections was found in concentrically braced frames. The adequacy of the current Canadian seismic design provisions is examined in view of the observations made. Key words: earthquake, seismic design, steel structures.


1995 ◽  
Vol 22 (2) ◽  
pp. 338-360 ◽  
Author(s):  
Robert Tremblay ◽  
André Filiatrault ◽  
Peter Timler ◽  
Michel Bruneau

The performance of concentrically braced steel frames and moment resisting steel frames during the January 17, 1994, Northridge, California, earthquake is examined. Most of the observations made during the reconnaissance visits confirmed the current knowledge on the inelastic response of these structural systems. This permits the anticipation of proper seismic behavior for buildings designed according to the seismic provisions that have been recently introduced in the Canadian building code and standard for steel structures. In some cases, however, the observed damage raised concerns that should be addressed in future investigations or next editions of these codes. Preventing potentially hazardous nonstructural damage, avoiding premature nonductile failures anywhere along the lateral load paths, limiting structural and nonstructural damage due to brace buckling, and accounting for the vertical ground motion are among those issues. Key words: earthquake, seismic, steel, concentrically braced frames, moment resisting frames, weld.


1992 ◽  
Vol 19 (6) ◽  
pp. 1025-1031 ◽  
Author(s):  
R. G. Redwood ◽  
A. K. Jain

Extensive research into the inelastic seismic response of concentrically braced frames and their components has been carried out in the last two decades. This knowledge has now been incorporated into seismic design practice in several countries, notably the U.S.A., Canada, and New Zealand. In this paper, design specifications from these three countries, which derive largely from the same body of research, are compared. The basic design philosophy for concentrically braced steel frames, loading, and member detailing are examined. It is concluded that, in general, the Canadian specifications are in conformity with the available information and have many similar features to codes of the other countries. Significant differences exist in the classification of braced frames, between interstorey drift requirements, in the treatment of dual structural systems, and to a lesser extent in member detailing requirements. Some features of Canadian codes meriting review are identified. Key words: structural engineering, earthquakes, standards, steel, braced frame, ductility, concentric bracing, dual system.


Author(s):  
Charles Clifton ◽  
Michel Bruneau ◽  
Greg MacRae ◽  
Roberto Leon ◽  
Alistair Fussell

This paper presents preliminary field observations on the performance of selected steel structures in Christchurch during the earthquake series of 2010 to 2011. This comprises 6 damaging earthquakes, on 4 September and 26 December 2010, February 22, June 6 and two on June 13, 2011. Most notable of these was the 4 September event, at Ms7.1 and MM7 (MM as observed in the Christchurch CBD) and most intense was the 22 February event at Ms6.3 and MM9-10 within the CBD. Focus is on performance of concentrically braced frames, eccentrically braced frames, moment resisting frames and industrial storage racks. With a few notable exceptions, steel structures performed well during this earthquake series, to the extent that inelastic deformations were less than what would have been expected given the severity of the recorded strong motions. Some hypotheses are formulated to explain this satisfactory performance.


2017 ◽  
Vol 11 (1) ◽  
pp. 485-495 ◽  
Author(s):  
Amin Mohebkhah ◽  
Marzieh Akefi

Braced steel frames are sometimes designed with out-of-plane shifted bracing members on the first story due to architectural or functional considerations. Such frames are classified and designated as frames having the Type-4 horizontal structural irregularity entitled “frames with out-of-plane offset irregularity” as per theMinimum Design Loads for Building and Other Structures(ASCE 7-10). The purpose of this study is to investigate the nonlinear seismic behavior of ordinary steel concentrically braced frames with out-of-plane offset irregularity and evaluate their seismic design parameters. To this end, two 3-story and 6-story three-dimensional ordinary concentrically braced frames (OCBFs) with and without out-of-plane offset of one of the vertical elements on the first story were considered (i.e. irregular and regular configurations). The seismic design parameters considered in this study includes: frame overall overstrength factor, column overstrength factor and the inelastic dynamic inter-story drift demands. Nonlinear time-history dynamic analysis of the frames showed that overall overstrength factor of the low- and mid-rise irregular frames studied in this research is lower than that of the regular ones. Moreover, it was found that theSeismic Provisionsprescribed overstrength factor (i.e. Ωo=2.0) to amplify columns axial seismic forces in OCBFs is not conservative for the studied regular frames’ columns as well as the columns in the vicinity of the shifted bracing members on the first story of the irregular frames. Also, it was shown that the studied low- and mid-rise regular and irregular concentrically braced frames experience greater inter-story drift demands than predicted by the amplified elastic analysis proposed in the codes.


1998 ◽  
Vol 25 (1) ◽  
pp. 1-15 ◽  
Author(s):  
M A Rahgozar ◽  
J L Humar

Observations during many earthquakes have shown that building structures are able to sustain without damage earthquake forces considerably larger than those they were designed for. This is explained by the presence in such structures of significant reserve strength not accounted for in design. Relying on such overstrength, many seismic codes permit a reduction in design loads. The possible sources of reserve strength are outlined in this paper, and it is reasoned that a more rational basis for design would be to account for such sources in assessing the capacity rather than in reducing the design loads. As an exception, one possible source of reserve strength, the redistribution of internal forces, may be used in scaling down the design forces. This is because such scaling allows the determination of design forces through an elastic analysis rather than through a limit analysis. To assess the extent of reserve strength attributable to redistribution, steel building structures having moment-resisting frames or concentrically braced frames and from 2 to 30 storeys in height are analyzed for their response to lateral loading. A static nonlinear push-over analysis is used in which the gravity loads are held constant while the earthquake forces are gradually increased until a mechanism forms or the specified limit on interstorey drift is exceeded. It is noted that in moment-resisting frames the reserve strength reduces with an increase in the number of storeys as well as in the level of design earthquake forces. The P→Δ effect causes a further reduction. In structures having braced frames the main parameter controlling the reserve strength is the slenderness ratio of the bracing members. In these structures, reserve strength is almost independent of both the height of the structure and the effect of building sway. Key words: seismic design, overstrength factor, reserve strength owing to redistribution, steel moment-resisting frames, steel-braced frames, push-over analysis.


Author(s):  
W. R. Walpole

This paper is the result of deliberations of the Society's Study Group for the seismic design of steel structures.


2017 ◽  
Vol 137 ◽  
pp. 211-227 ◽  
Author(s):  
Onur Seker ◽  
Bulent Akbas ◽  
Pinar Toru Seker ◽  
Mahmoud Faytarouni ◽  
Jay Shen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document