Model for the Lateral Behavior of Reinforced Concrete Columns Including Shear Deformations

2008 ◽  
Vol 24 (2) ◽  
pp. 493-511 ◽  
Author(s):  
Eric J. Setzler ◽  
Halil Sezen

This research is focused on modeling the behavior of reinforced concrete columns subjected to lateral loads. Deformations due to flexure, reinforcement slip, and shear are modeled individually using existing and new models. Columns are classified into five categories based on a comparison of their predicted shear and flexural strengths, and rules for combining the three deformation components are established based on the expected behavior of columns in each category. Shear failure in columns initially dominated by flexural response is considered through the use of a shear capacity model. The proposed model was tested on 37 columns from various experimental studies. In general, the model predicted the lateral deformation response envelope reasonably well.

2005 ◽  
Vol 21 (1) ◽  
pp. 71-89 ◽  
Author(s):  
Kenneth J. Elwood ◽  
Jack P. Moehle

Existing reinforced concrete columns with light transverse reinforcement are vulnerable to shear failure during seismic response. Shear strength models, modeling the degradation of shear strength with increasing displacement ductility demand, have been widely used to evaluate the interstory drift capacity of such columns. The application of a shear strength model to determine the drift capacities for a database of 50 shear-critical columns demonstrates significant inaccuracies with such a method. An empirical drift capacity model based on the shear-critical column database provides a better estimate of the interstory drift at shear failure. The new drift capacity model identifies the most critical parameters affecting the drift capacity of shear-critical columns, namely, transverse reinforcement ratio, shear stress demand, and axial load ratio.


2021 ◽  
Vol 237 ◽  
pp. 112168
Author(s):  
Yixin Zhang ◽  
Shansuo Zheng ◽  
Lei Li ◽  
Liguo Dong ◽  
Jinming Ji ◽  
...  

Author(s):  
Hesham A. Haggag ◽  
Nagy F. Hanna ◽  
Ghada G. Ahmed

The axial strength of reinforced concrete columns is enhanced by wrapping them with Fiber Reinforced Polymers, FRP, fabrics.  The efficiency of such enhancement is investigated for columns when they are subjected to repeated lateral loads accompanied with their axial loading.  The current research presents that investigation for Glass and Carbon Fiber Reinforced Polymers (GFRP and CFRP) strengthening as well.  The reduction of axial loading capacity due to repeated loads is evaluated. The number of applied FRP plies with different types (GFRP or CFRP) are considered as parameters in our study. The study is evaluated experimentally and numerically.  The numerical investigation is done using ANSYS software. The experimental testing are done on five half scale reinforced concrete columns.  The loads are applied into three stages. Axial load are applied on specimen in stage 1 with a value of 30% of the ultimate column capacity. In stage 2, the lateral loads are applied in repeated manner in the existence of the vertical loads.  In the last stage the axial load is continued till the failure of the columns. The final axial capacities after applying the lateral action, mode of failure, crack patterns and lateral displacements are recorded.   Analytical comparisons for the analyzed specimens with the experimental findings are done.  It is found that the repeated lateral loads decrease the axial capacity of the columns with a ratio of about (38%-50%).  The carbon fiber achieved less reduction in the column axial capacity than the glass fiber.  The column confinement increases the ductility of the columns under the lateral loads.


2018 ◽  
Vol 2018 ◽  
pp. 1-19
Author(s):  
Chunyi Yu ◽  
Hua Ma ◽  
Yongping Xie ◽  
Zhenbao Li ◽  
Zhenyun Tang

The size effect on the seismic performance of conventional reinforced concrete columns has been observed in terms of flexural failure and shear failure. Under earthquake loading, slender columns experience flexural failure, and short columns experience flexure-shear failure and shear failure. However, the effect of section size on the seismic performance of high-strength reinforced concrete columns under the conditions of different shear span-to-depth ratios requires further confirmation. For this purpose, six high-strength reinforced concrete columns with shear span-to-depth ratios of 2 and 4 were subjected to cyclic loading in this study. The experimental results indicated that relative nominal flexural strength, energy dissipation coefficient, factor of safety, and local factor of safety all exhibited a strong size effect by decreasing with increasing column size. Furthermore, the size effect became stronger as the shear span-to-depth ratio was increased, except for average energy dissipation coefficient. The observed changes in the factor of safety were in good agreement with the Type 2 size effect model proposed by Bažant. Thus, based on the local factor of safety and Bažant’s Type 2 model, the code equation for moment capacity of different shear span-to-depth ratios was modified to provide a consistent factor of safety regardless of column size.


2011 ◽  
Vol 105-107 ◽  
pp. 948-952
Author(s):  
Pin Wu Guan ◽  
Meng Chen

An experiment on shear capacity for HRB500 grade R/C frame columns within yield hinge regions is studied. The different failure modes for specimens within yield hinge regions are classified, and the hysteretic curves are studied. The shear contributions of stirrups and concrete for columns are analyzed in detail. Based on the experimental study, formulas for the shear capacity of reinforced concrete columns are supposed under seismic loading, and the different formulas are adopted to estimate the shear capacity for columns at different seismic levels, Both security and economy of structural design are all considered.


2019 ◽  
Vol 145 (10) ◽  
pp. 04019096 ◽  
Author(s):  
Jingjing Hua ◽  
Marc O. Eberhard ◽  
Laura N. Lowes ◽  
Xianglin Gu

Sign in / Sign up

Export Citation Format

Share Document