Ground Motion Intensity Measures to Evaluate I: The Liquefaction Hazard in the Vicinity of Shallow-Founded Structures

2017 ◽  
Vol 33 (1) ◽  
pp. 241-276 ◽  
Author(s):  
Shideh Dashti ◽  
Zana Karimi

When evaluating the liquefaction hazard within a performance-based framework, whether using simplified procedures or advanced numerical tools, the hazard and its effects on structures need to be evaluated under a range of ground motions. Choice of an optimum intensity measure (IM) in the selection and scaling of ground motions will reduce variability in the predicted response, dependence on source characteristics, and uncertainty in the prediction of the IM. This paper presents the results of a numerical parametric study, validated against centrifuge results, to evaluate the influence of different IMs on the liquefaction hazard in the far-field and near shallow-founded structures. Pore pressure redistribution and soil-structure interaction were considered in estimating the liquefaction hazard in terms of peak excess pore pressure ratio ( r u,peak). The IMs at the base rock, far-field soil surface, and foundation with the best combination of efficiency, sufficiency, and predictability were evaluated and identified as: (1) pseudo-spectral acceleration at the site's initial fundamental period ( PSA Base[ T So]) for predicting r u,peak in the far-field; (2) peak ground acceleration, ( PGA Base); and Arias intensity ( AI Base) for predicting r u,peak under the foundation.

2006 ◽  
Vol 22 (2) ◽  
pp. 413-438 ◽  
Author(s):  
Steven L. Kramer ◽  
Robert A. Mitchell

The requirements of performance-based earthquake engineering place increasing importance on the optimal characterization of earthquake ground motions. With respect to liquefaction hazard evaluation, ground motions have historically been characterized by a combination of peak acceleration and earthquake magnitude, and more recently by Arias intensity. This paper introduces a new ground motion intensity measure, CAV5, and shows that excess pore pressure generation in potentially liquefiable soils is considerably more closely related to CAV5 than to other intensity measures, including peak acceleration and Arias intensity. CAV5 is shown to be an efficient, sufficient, and predictable intensity measure for rock motions used as input to liquefaction hazard evaluations. An attenuation relationship for CAV5 is presented and used in an example that illustrates the benefits of scaling bedrock motions to a particular value of CAV5, rather than to the historical intensity measures, for performance-based evaluation of liquefaction hazards.


1995 ◽  
Vol 11 (1) ◽  
pp. 129-160 ◽  
Author(s):  
Paul C. Rizzo ◽  
N. R. Vaidya ◽  
E. Bazan ◽  
C. F. Heberling

Comparisons of response spectra from near and far-field records to those estimated by attenuation functions commonly used in evaluating seismic hazards show that these functions provide reasonable results for near-field western North American sites. However, they estimate relatively small motions for far-field eastern North American sites, which is contrary to the empirical evidence of the 1886 Charleston and 1988 Saguenay Earthquakes. Using the 1988 Saguenay records scaled for magnitude, and several western North American records scaled to account for the slower attenuation in the east, we have developed deterministic median and 84th percentile, 5 percent damped response spectra to represent ground motions from a recurrence of the 1886 Charleston Earthquake at a distance between 85 to 120 km. The resulting 84th percentile spectrum has a shape similar to, but is less severe than, the USNRC Regulatory Guide 1.60 5 percent damped spectrum tied to a peak ground acceleration of 0.2g.


2020 ◽  
Vol 195 ◽  
pp. 02026
Author(s):  
Mousavi Sayedmasoud ◽  
Majid Ghayoomi

Past studies revealed that excess pore pressure generation due to cyclic loading is highly governed by induced strains, volumetric deformation potential of soil, number of cycles, and bulk stiffness of pore fluid. It is well established that partial saturation can significantly reduce bulk stiffness of pore fluid and consequently excess pore pressure generation during seismic loading. On the basis of that, a number of researchers have investigated induced partial saturation as an effective soil improvement technique to increase the liquefaction resistance of fully saturated soils. This paper focuses on development of a semi- empirical model to interpret the effects of partial saturation on the excess pore pressure generation in sands. In this regard, an existing strain based excess pore pressure ratio (ru) prediction model originally developed for fully saturated soils was modified to incorporate the effect of partial saturation on the excess pore pressure generation. The literature data as well as data from a series of strain-controlled direct simple shear test were used to evaluate the reliability of the proposed equation in predicting the excess pore pressure ratio in partial saturation condition.


2007 ◽  
Vol 44 (1) ◽  
pp. 1-19 ◽  
Author(s):  
Dawn A Shuttle ◽  
John Cunning

Silt tailings (slimes) are difficult materials to test in that, like sands, it is extremely difficult to obtain undisturbed samples and subsequently re-establish them in a triaxial cell for element testing in a laboratory in anything approaching their in situ condition. Evaluation of silt tailing behaviour has to depend on in situ tests, and the piezocone (CPTu) in particular. However, CPTs in silt generate substantial excess pore pressure and there is no established methodology to evaluate the measured responses in terms of soil properties, as drained sand-based CPT interpretation is inapplicable. A case history of particularly loose silt tailings is reported in which the National Center for Earthquake Engineering Research (NCEER) liquefaction assessment method would lead to uncertainty in the liquefaction potential. However, the extremely high CPTu excess pore pressure ratio, Bq, and low dimensionless CPT resistance, Qp, at this site indicates liquefaction is likely occurring during pushing of the CPT. Detailed finite element simulations of the CPT using a critical state model provided an effective stress framework to evaluate the in situ state parameter of the silt from the measured CPT data. This framework shows that the group of dimensionless CPT variables Q(1 – Bq) + 1 is fundamental for the evaluation of undrained response during CPT sounding. And, despite the high silt content, the interpretation indicates that the tailings are indeed liquefiable.Key words: liquefaction, CPT, silt, finite element, critical state.


2016 ◽  
Vol 32 (3) ◽  
pp. 1903-1924 ◽  
Author(s):  
Anne Lemnitzer ◽  
Riccardo Cappa ◽  
Samuel Yniesta ◽  
Scott Brandenberg

Four large-scale centrifuge tests were performed at the NEES@UCDavis equipment site to study the cyclic behavior of levee structures resting atop soft organic peat. The model configurations using a non-liquefiable levee focused on the seismic deformation potential of peat during primary consolidation and secondary compression. The tests performed with a sandy levee studied the liquefaction potential of saturated loose sand fill overlying soft peat as well as the levee-peat-interaction under different loading conditions. The models were subjected to scaled ground motions representative of the Sacramento/San Joaquin Delta. System instrumentation consisted of linear potentiometers, pore pressure sensors and accelerometers. Slow data recorded at 1 Hz document the settlements during spin up, application of ground motions, and spin down. Fast data sampled at 4,167 Hz measured the dynamic response of the system, the excess pore pressure increase and immediate settlements. The project is archived at the NEES data repository under nees.org/warehouse/project/1161 .


2021 ◽  
Vol 27 (1) ◽  
pp. 1-8
Author(s):  
Lindung Zalbuin Mase

This paper presents a ground response analysis to simulate the liquefaction phenomenon during the 2011 Tarlay Earthquake in northern Thailand. The site investigation data and geophysical measurements on 7 sites in northern Thailand were collected. The multi-springs element model was implemented in finite element ground response analysis. Several parameters, such as peak ground acceleration, peak ground velocity, amplification factor, excess pore pressure ratio, were observed. Furthermore, the correlation from the ground motion parameters was generated to estimate liquefaction potential, which was represented by excess pore pressure ratio. The result showed that the excess pore pressure ratio was relatively well correlated with several ground parameters, such as amplification factor, velocity-acceleration ratio, and factor of safety against liquefaction. The results could be also used for the engineering practice in predicting liquefaction potential in Northern Thailand.


2022 ◽  
Author(s):  
Fereshteh Rahmani ◽  
Seyed Mahdi Hosseini

Abstract Liquefaction occurs in a loose and saturated sand layer, induces quite large damages to infrastructures, the importance of liquefaction mitigation has been emphasized to minimize earthquake disasters for many years. Many kinds of ground improvement techniques based on various improvement principles have been developed for liquefaction mitigation. Among them, deep mixing method with grid pattern was developed for liquefaction mitigation in the 1990s, where the grid of stabilized column walls functions to restrict the generation of excess pore pressure by confining the soil particle movement during earthquake. In this study, a parametric study of the grid-form deep mixing wall is performed using numerical modeling with GID+OpenSees interface V2.6.0. The finite element method with a three-dimensional analysis model can be used to estimate the foundation settlement over liquefiable soil layer. The validity of the developed model was evaluated by comparing the results obtained from the model with the results of numerical studies and the experimental centrifuge test to investigate the effect of deep mixing grid wall on the settlement and generation of excess pore pressure ratio of liquefiable soil. Based on the analysis, the settlement for improved soil was 69% smaller than the settlement for unimproved soil. The results also indicated that the grid wall space, relative density, and stiffness ratio between soil-cement columns and enclosed soil plays an important role in the occurrence of liquefaction and volumetric strains.


2021 ◽  
pp. 875529302110492
Author(s):  
Michael W Greenfield ◽  
Andrew J Makdisi

Since their inception in the 1980s, simplified procedures for the analysis of liquefaction hazards have typically characterized seismic loading using a combination of peak ground acceleration and earthquake magnitude. However, more recent studies suggest that certain evolutionary intensity measures (IMs) such as Arias intensity or cumulative absolute velocity may be more efficient and sufficient predictors of liquefaction triggering and its consequences. Despite this advantage, widespread hazard characterizations for evolutionary IMs are not yet feasible due to a relatively incomplete representation of the ground motion models (GMMs) needed for probabilistic seismic hazard analysis (PSHA). Without widely available hazard curves for evolutionary IMs, current design codes often rely on spectral targets for ground motion selection and scaling, which are shown in this study to indirectly result in low precision of evolutionary IMs often associated with liquefaction hazards. This study presents a method to calculate hazard curves for arbitrary intensity measures, such as evolutionary IMs for liquefaction hazard analyses, without requiring an existing GMM. The method involves the conversion of a known IM hazard curve into an alternative IM hazard curve using the total probability theorem. The effectiveness of the method is illustrated by comparing hazard curves calculated using the total probability theorem to the results of a PSHA to demonstrate that the proposed method does not result in additional uncertainty under idealized conditions and provides a range of possible hazard values under most practical conditions. The total probability theorem method can be utilized by practitioners and researchers to select ground motion time series that target alternative IMs for liquefaction hazard analyses or other geotechnical applications. This method also allows researchers to investigate the efficiency, sufficiency, and predictability of new, alternative IMs without necessarily requiring GMMs.


Author(s):  
Trevor I. Allen

ABSTRACT The Australian territory is just over 400 km from an active convergent plate margin with the collision of the Sunda–Banda Arc with the Precambrian and Palaeozoic Australian continental crust. Seismic energy from earthquakes in the northern Australian plate-margin region are channeled efficiently through the low-attenuation North Australian craton (NAC), with moderate-sized (Mw≥5.0) earthquakes in the Banda Sea commonly felt in northern Australia. A far-field ground-motion model (GMM) has been developed for use in seismic hazard studies for sites located within the NAC. The model is applicable for hypocentral distances of approximately 500–1500 km and magnitudes up to Mw 8.0. The GMM provides coefficients for peak ground acceleration, peak ground velocity, and 5%-damped pseudospectral acceleration at 20 oscillator periods from 0.1 to 10 s. A strong hypocentral depth dependence is observed in empirical data, with earthquakes occurring at depths of 100–200 km demonstrating larger amplitudes for short-period ground motions than events with shallower hypocenters. The depth dependence of ground motion diminishes with longer spectral periods, suggesting that the relatively larger ground motions for deeper earthquake hypocenters may be due to more compact ruptures producing higher stress drops at depth. Compared with the mean Next Generation Attenuation-East GMM developed for the central and eastern United States (which is applicable for a similar distance range), the NAC GMM demonstrates significantly higher short-period ground motion for Banda Sea events, transitioning to lower relative accelerations for longer period ground motions.


2015 ◽  
Vol 09 (01) ◽  
pp. 1550003 ◽  
Author(s):  
Yu-Ye Zhang ◽  
Yong Ding ◽  
Yu-Tao Pang

The intensity measures of ground motions are closely related to the damage of bridge structures. However, it is difficult for engineers to select these parameters to predict the potential damage of cable-stayed bridges under earthquakes. This paper investigated the correlation between the intensity measures of far-fault ground motions and the damage of cable-stayed bridges. 322 far-fault ground motions were selected, and 26 available intensity measures in the literatures were chosen to carry out comparative analysis on a cable-stayed bridge with a single pylon. The nonlinear finite element model of this bridge was built, considering the stiffness degradation of concrete and low-cycle fatigue effect of steel. It is concluded in this study that velocity spectral intensity (VSI) is the optimal intensity measure for seismic damage analysis of cable-stayed bridges subjected to far-fault ground motions, followed by spectral acceleration at fundamental period and Housner intensity. Five commonly used intensity measures, namely peak ground acceleration (PGA), the ratio of PGA to peak ground velocity (PGA/PGV), specific energy density (SED), predominant period (Tp) and mean period (Tm), demonstrate low correlations with the bridge damage. In particular, there is very weak correlation between the conventionally used PGA and the seismic damage of cable-stayed bridges.


Sign in / Sign up

Export Citation Format

Share Document