scholarly journals Performance Prediction Equations for Linear Planar Structural Systems: Concept, Formulation, and Validation

2018 ◽  
Vol 34 (2) ◽  
pp. 697-718 ◽  
Author(s):  
Marta De Bortoli ◽  
Farzin Zareian

This paper presents and validates an analytical formulation, denoted as Performance Prediction Equations (PPEs), that relates the seismic response engineering demand parameter (EDP) of buildings to earthquake parameters such as magnitude, epicentral distance, and type of faulting. PPEs are conceptually novel and can be readily included in any hazard calculation program to directly estimate EDP hazard curves. The PPEs presented herein are based on the linearization of response spectrum analysis (RSA) formulation for estimation of the seismic response of multi-degree-of-freedom (MDOF) models for planar structural systems. Equations for mean and variance are provided for floor displacement, interstory drift ratio, and normalized base shear. The input parameters needed to apply the proposed PPEs are the modal properties of the structural system and the selection of an existing ground motion model (GMM). The proposed PPEs are validated against simulated results using a set of planar building models and the Campbell-Bozorgnia 2014 GMM. The comparison confirms that the proposed PPEs provide an accurate estimate of the statistics of the said EDPs.

Seismic analysis of structural systems with floor diaphragms has been a requisite in the recent past. The duty of a structural engineer is to be prudent about the behavior of every structural system adopted. Amongst the structural systems that are adopted world over, diaphragm with rigid and semi-rigid floor plate are adopted widely in the analysis. This research focuses on the backstay effect i.e. podium structural interaction with the tower area and consideration of retaining wall as increment of lateral stiffness as specified in latest tall building code IS6700:2016 for low and high rise structures. In the current study models were prepared with low to high rise storeys with rigid and flexible diaphragms considering backstay diaphragm placing tower at center and corner. The models were subjected to seismic forces; response spectrum along with the combination of the gravity loads. The structural responses like natural periods, base shear, displacement and inter storey drift were also studied.


2020 ◽  
Vol 6 (1) ◽  
pp. 1
Author(s):  
İbrahim Hakkı Erkan ◽  
Talha Polat Doğan ◽  
Musa Hakan Arslan

Reinforced concrete walls are very efficient structural elements in terms of carrying the lateral loads that are expected to affect the structures during the service of the buildings. These elements, which are not used for economic reasons in buildings designed in areas with low seismic hazard, can actually provide a significant increase in performance with a very small increase in construction cost. In this study, a total of 9 building models have been created and the relationship between optimum reinforced concrete wall ratio and cost on these buildings has been investigated. The design and analysis of the models were carried out according to the criteria specified in TSC 2018. Three different structural systems specified in TSC 2018 were used in the designed models. These structural systems used; RC frame structures, RC wall-frame structures and RC wall structures. These structures were analyzed by Response Spectrum Method which is linear analysis method and base shear forces were obtained. Then, push-over analysis, which is a nonlinear analysis method, was applied to obtain the base shear forces that the structure can actually carry. After the analysis, the quantities of materials to be used for the construction of the structural systems of the models were calculated and current manufacturing prices and rough costs were calculated. In order to compare the obtained costs with the structural performances, nonlinear shear forces and linear shear forces ratios were calculated and the over strength factors were calculated for each model. In the light of the data obtained from the studies in the literature, when the over strength factors and cost values are examined together, it is concluded that the optimum design for the conditions specified in TSC 2018 will be provided with the RC wall ratio between 0.001 - 0.0016. It is concluded that lateral load carrying capacity of construction increases up to 650% by increasing the construction cost by 17% for the designed models.


2018 ◽  
Vol 877 ◽  
pp. 276-281
Author(s):  
Shreya Sitakant Shetgaonkar ◽  
Purnanand Savoikar

Current seismic design practice assumes the base of the building to be fixed and does not consider the flexibility of foundation and soil. This assumption is realistic only when the structure is founded on solid rock or when the relative stiffness of the foundation soil compared to the superstructure is high. Whereas, in reality due to natural ability of soil to deform, supporting soil medium modifies the response of the structure during earthquake to some extent. In this work the effect of soil structure interaction on seismic response of building resting on different types of foundation was studied. Present work aims to study the effect of soil structure interaction on seismic response of building resting on fixed base, pile foundation, raft foundation and combined pile-raft foundation. G+9 RCC building is analyzed for earthquake loads considered in zone III by response spectrum method and storey displacement and base shear force of building by considering and without considering SSI effect is found out by using MIDAS GEN software.


Author(s):  
Yash Patel ◽  
Mr Jigar Zala ◽  
Prof. Deepak R. Tarachandani

P-Delta analysis affect the seismic responses of structures. When the structure responds elastically, its importance can be insignificant, but it is relevant when the structure responds to an inelastic set. The P-∆ effect normally raises the structural displacement response. Dynamic instability can also occur when the system is exposed to extreme earthquake motions. Plan irregularities can lead to substantial eccentricity between the centre of mass and the centre of rigidity in the RC framed structure, which can lead to a negative lateral and torsional response. Irregular structures require more careful structural evaluation to reach a suitable behaviour during an earthquake. In this research, a parametric study will be conducted on G+29 RC framed buildings having plan irregularity with consideration of the P-delta effect. Time history analysis, response spectrum analysis and static co-efficient method will be conducted to evaluate results of different structural systems and study the parameters like Displacement, Storey drift, Time period, Axial force, Base Shear, Bending Moment, etc with the help of structural analysis software ETABs.


2019 ◽  
Vol 5 (4) ◽  
pp. 141
Author(s):  
İbrahim Hakkı Erkan ◽  
Talha Polat Doğan

In this study, two different analysis methods were compared; the first is a linear static analysis method and the second is a linear dynamic analysis method. First one is the Equivalent Seismic Load Method, which is a linear static method where seismic loads can be obtained by applying a simple calculation. The second method, the Response Spectrum method, is a linear dynamic analysis method which obtains the seismic loads using more complex statistical calculations. For this analysis study, 18 structural models with 3 different building heights were analyzed according to the conditions of Equivalent Seismic Load Method and Response Spectrum Method specified in both TSC 2007 and TSC 2018 and base shear forces obtained as a result of these analyzes were compared. As a result of analysis; compared to the results obtained from TSC 2007, due to the effective stiffness coefficients specified in TSC 2018, it was observed that the base shear forces obtained for both methods were lower and the modal period values were longer in the analyzes applied according to TSC 2018. This means that the structural systems created with the designs according to TSC 2018 are more ductile than the structural systems created with the designs made according to TSC 2007. Base shear forces obtained by 2 different analysis methods applied according to regulations stated in both TSC 2018 and TSC 2007; it was observed that the base shear forces obtained by the Equivalent Seismic Load Method were higher than the results of the Response Spectrum Method.


2014 ◽  
Vol 539 ◽  
pp. 726-730
Author(s):  
Yu Chen

In this thesis, Three structural systems of main towerbeam-consolidation, two tower-beam-consolidation and none-tower-consolidation with the pile-soil-structure interaction are established ,free vibration characteristics and seismic response of three structural systems are investigated, and seismic response of Response spectrum and Earthquake schedule are analyzed respectively and compared. Studies have shown that in the process of the bridge construction, because of the small span, internal forces were the control action and the displacement is the second.


2013 ◽  
Vol 671-674 ◽  
pp. 1399-1402
Author(s):  
Ying Sun ◽  
Jian Gang Sun ◽  
Li Fu Cui

To study the impact of floating roof on seismic response of vertical storage tank structure system subjected to seismic excitation, select 150000m3 storage tanks as research object, and the finite element analysis model of storage tanks with and without floating roof were established respectively. The seismic response of these two types of structure in different site conditions and seismic intensity were calculated and the numerical solutions were compared. The results show that floating roof has little impact on base shear and base moment in different site conditions and seismic intensity. Floating roof can effectively reduce the sloshing wave height. The influence of floating roof on dynamic fluid pressure decreases with the increase of seismic intensity, which is less affected by ground conditions.


Sign in / Sign up

Export Citation Format

Share Document