scholarly journals Parametric Study of P-Delta Effect on Irregular RC Structure with Structural Systems Having Different Density of Shear Walls

Author(s):  
Yash Patel ◽  
Mr Jigar Zala ◽  
Prof. Deepak R. Tarachandani

P-Delta analysis affect the seismic responses of structures. When the structure responds elastically, its importance can be insignificant, but it is relevant when the structure responds to an inelastic set. The P-∆ effect normally raises the structural displacement response. Dynamic instability can also occur when the system is exposed to extreme earthquake motions. Plan irregularities can lead to substantial eccentricity between the centre of mass and the centre of rigidity in the RC framed structure, which can lead to a negative lateral and torsional response. Irregular structures require more careful structural evaluation to reach a suitable behaviour during an earthquake. In this research, a parametric study will be conducted on G+29 RC framed buildings having plan irregularity with consideration of the P-delta effect. Time history analysis, response spectrum analysis and static co-efficient method will be conducted to evaluate results of different structural systems and study the parameters like Displacement, Storey drift, Time period, Axial force, Base Shear, Bending Moment, etc with the help of structural analysis software ETABs.

Author(s):  
Harsh Joshi

Abstract: Due to sloping land and high seismically active zones, designing and construction of multistory buildings in hilly regions is always a challenge for structural engineers. This review paper focuses to establish a review study on the Possible Types of building frame configuration in the hilly region and he behavior of Such building frames under seismic loading conditions, and (3) The recent research and developments to make such frames less vulnerable to earthquakes. This paper concludes that the dynamics characteristics of such buildings are significantly different in both horizontal and vertical directions, resulting in the center of mass and center of stiffness having eccentricity at point of action and not vertically aligned for different floors. When such frames are subjected to lateral loads, due to eccentricity it generates torsion in the frame. Most of the studies agree that the buildings resting on slanting ground have higher displacement and base shear compared to buildings resting on plain ground and the shorter column attracts more forces and undergoes damage when subjected to earthquake. Keywords: Building frame configuration, Seismic behavior, Dynamic characteristics, Response spectrum analysis, time history analysis.


2014 ◽  
Vol 1025-1026 ◽  
pp. 918-921 ◽  
Author(s):  
Yong Chul Kim ◽  
Sung Won Yoon

The results of wind tunnel experiments were used to conduct time history analyses of three conventional square cross-section tall buildings with different structural systems. The primary purpose of the study was the direct comparison of the effects of the wind loads on the steel tall buildings. Time history analyses were conducted by applying local wind forces to the center of each floor. The results showed that, although the bending moments in the ground-level column on the two principal axes were different, the peak normal stresses were almost the same regardless of the structural systems. Similar observations were made regarding the tip displacements. Furthermore, analyses for the various loading conditions revealed that the contribution of the bending moment in the across-wind direction was the largest, followed by that in the along-wind direction. The ratio of the peak normal stresses for different loading conditions were observed to be almost the same regardless of the structural systems.


2020 ◽  
Vol 9 (1) ◽  
pp. 1986-1990

The structural response of any structure is the result of various dynamic phenomenon which lead to vibrations or shaking of the structure , depending on the duration of the ground motion, its frequency and time period. In the present work, dynamic analysis of a typical steel silo is done by using linear Time History Analysis and Response Spectrum method for earthquake Zone V as per Indian code. Two analyses are carried out namely, Time History Analysis (THA) and Response Spectrum Analysis (RSA) using STAAD.ProV8i software. The Load combinations are worked out as per IS-1893-2002. The results in terms of Fundamental natural period, Design Base shear, Lateral Displacements, are compared for the two different silo models considered in the present study.


Author(s):  
mahaboob subhani* Shaik ◽  
Budda Beeraiah

The improvements in (3D) three–dimensional underlying examination and processing assets have permitted the effective and safe plan of taller constructions. These constructions are the outcome of expanding metropolitan densification and financial suitability. The pattern towards continuously taller constructions has requested a move from the conventional strength based plan approach of structures to an emphasis on obliging the general movement of the design. Presently a day's supported cement (RC) divider outline structures are generally suggested for metropolitan development in zones with high SE danger. Presence of shear dividers bestows an enormous solidness to the sidelong power opposing arrangement of the RC building. Appropriate specifying of shear dividers can likewise prompt bendable conduct of such constructions during solid quake shaking. One of the remarkable boundaries impacting the shear divider (SD) SE (SE) conduct outline structures is the SD region proportion. In this manner a scientific examination is performed to assess the impact of Shear Wall Area to floor zone proportion (SW/FZP %) on the SE conduct of multistoried RC structures with delicate story at ground floor. For this reason, 12 structure plans that have Five, Eight and Twelve stories with SW/FZP % going somewhere in the range of 0.70% and 1.31% in the two ways are created. Here, the conduct of these plans under quake stacking is evaluated via doing Response Spectrum Analysis and Linear Time History Analysis utilizing primary examination programming E-TABS. Reaction Spectrum Analysis is finished by SE code IS 1893:2002. Straight Time History Analysis is completed by considering the three ground movement records to be specific Bhuj, Chamba and Uttarkasi. The primary boundaries considered in this investigation are the connection SW/FZP % has with base shear and rooftop dislodging, story uprooting and story float. The logical outcomes demonstrated that building plans with SW/FZP % equivalent to 1% acted sufficiently under tremor loads. Furthermore when the SW/FZP % expanded past 1% it is seen that the improvement of the SE presentation isn't as huge.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Qianqian Liang ◽  
Chen Zhao ◽  
Jun Hu

This study aimed to analyze the formation and application of the time-domain elastoplastic response spectrum. The elastoplastic response spectrum in the time domain was computed according to the trilinear force-restoring model. The time-domain elastoplastic response spectrum corresponded to a specific yield strength coefficient, fracture stiffness, and yield stiffness. However, the force-restoring models corresponding to different structural systems and the states of the structural systems at different moments were not the same. Therefore, the dynamic characteristics of a particular periodic point corresponding to a particular structure were meaningful for the elastoplastic response spectrum. In addition, the curve in the time-domain dimension along the periodic point truly reflected the real-time response of the structure when the structure encountered a seismic load.


Author(s):  
Marame Brinissat ◽  
Rajmund Kuti ◽  
Zouhir Louhibi

Dynamic analysis is very important to better understand the performance of structural elements of a bridge. For this purpose, a seismic analysis of an Algerian highway bridge designed with the new Algerian seismic bridge regulation (RPOA -2008) was carried out using linear and nonlinear analyses. Therefore, response spectrum, time history analyses were performed to evaluate the seismic responses of the designed bridge. The performance of the designed bridge is assessed using 10 ground motion records. The proposed methodology allows an efficient comparison of the seismic response of the bridge in terms of base shear forces, bending moment and displacements. Finally, the paper concludes with a discussion of the specific outcomes.


CONSTRUCTION ◽  
2021 ◽  
Vol 1 (2) ◽  
pp. 93-101
Author(s):  
Saffuan Wan Ahmad ◽  
Muhammad Aimran Amzar Kamarudin ◽  
Wan Aniq Ridhwan Wan Ariffin

On the 5th June 2015, an earthquake hit Ranau, Sabah with a magnitude of 6.0 that caused 18 casualties and several injuries are one of the examples that show Malaysia is not safe from any seismic event. Most of the structure in Malaysia was designed not to include seismic action.  Furthermore, an area that has a high density of population such as in the central region (Klang valley) and several main cities in Malaysia has less available land to build landed housing and uses high-rise apartments as an alternative. High-rise buildings that are normally having problems with soft story mechanisms and plan irregularity which could lead to severe damage when earthquakes happen. This study aims to observe the response of high-rise buildings when under different earthquakes in the presence of shear walls. To achieve this objective two models were modelled and analyzed by using ETABS software, the one with a shear wall and the one with no shear wall. The methods used in this study were the response spectrum method and time-history analysis. In the end, the parameters observed were base shear, story stiffness, story drift, and story displacement. The observations highlighted that the effect of earthquake intensities shows a significant effect. The acquired results indicated that the building with the shear wall is more resistant and strong structures as compared to buildings without shear wall when undergoing seismic analysis.


2013 ◽  
Vol 756-759 ◽  
pp. 4482-4486
Author(s):  
Chun Gan ◽  
Xue Song Luo

In recent years, frequent earthquakes have caused great casualties and economic losses in China. And in the earthquake, damage of buildings and the collapse is the main reason causing casualties. Therefore, in the design of constructional engineering, a seismicity of architectural structure is the pressing task at issue. Through time history analysis method, this paper analyzes the time history of building structural response and then it predicts the peak response of mode by response spectrum analysis. Based on this, this paper constructs a numerical simulation model for the architecture by using finite element analysis software SATWE. At the same time, this paper also calculates the structure seismic so as to determine the design of each function structure in architectural engineering design and then provides reference for the realization of earthquake-resistant building.


Author(s):  
Dion Marriott

This paper discusses the application of the Structural Performance factor (SP) within a Direct Displacement-Based Design framework (Direct-DBD). As stated within the New Zealand loadings standard, NZS1170.5:2004 [1], the SP factor is a base shear multiplier (reduction factor) for ductile structures, i.e. as the design ductility increases, the SP factor reduces. The SP factor is intended to acknowledge the better-than-expected structural behaviour of ductile systems (both strength, and ductility capacity) by accounting for attributes of response that designers are unable to reliably estimate. The SP factor also recognizes the less dependable seismic performance of non-ductile structures, by permitting less of a reduction (a larger SP factor) for non-ductile structures. Within a traditional force-based design framework the SP factor can be applied to either the design response spectrum (a seismic hazard/demand multiplier), or as a base shear multiplier at the end of design (structural capacity multiplier) – either of these two approaches will yield an identical design in terms of the required design base shear and computed ULS displacement/drift demands. However, these two approaches yield very different outcomes within a Direct-DBD framework – in particular, if SP is applied to the seismic demand, the design base shear is effectively multiplied by (SP)2 (i.e. a two-fold reduction). This paper presents a “DBD-corrected” SP factor to be applied to the design response spectrum in Direct-DBD in order to achieve the intent of the SP factor as it applies to force-based design. The proposed DBD-corrected SP factor is attractive in that it is identical to the SP relationship applied to the elastic site hazard spectrum C(T) for numerical integration time history method of analysis within NZS 1170.5:2004 [1], SP,DDBD = (1+SP)/2.


Author(s):  
Kugan K ◽  
Mr. Nandha Kumar P ◽  
Premalath J

In this study, four geometrically similar frames having different configurations of masonry infills, has been investigated. In this article attempts are made to explain the factors that impact the soft storey failure in a building are compared with different type of infill. That is Four models like RC bare frame, RC frame with brick mansonry infill, RC frame with brick infill in all the storeys exept the firstsoft storey, RC frame with inverted V bracing in the soft storey. Time history analysis has been carried out for a G+8 multistoried building to study the soft storey effect at different floor levels using E tabs software. The behavior of RC framed building with soft storey under seismic loading has been observed in terms of maximum displacement ,maximum storey drift, base shear and storey stiffness as considered structure.


Sign in / Sign up

Export Citation Format

Share Document