scholarly journals Biology of Lipid Rafts: Introduction to the Thematic Review Series

2019 ◽  
Vol 61 (5) ◽  
pp. 598-600
Author(s):  
Dmitri Sviridov ◽  
Yury I. Miller

Lipid rafts are organized plasma membrane microdomains, which provide a distinct level of regulation of cellular metabolism and response to extracellular stimuli, affecting a diverse range of physiologic and pathologic processes. This Thematic Review Series focuses on Biology of Lipid Rafts rather than on their composition or structure. The aim is to provide an overview of ideas on how lipid rafts are involved in regulation of different pathways and how they interact with other layers of metabolic regulation. Articles in the series will review the involvement of lipid rafts in regulation of hematopoiesis, production of extracellular vesicles, host interaction with infection, and the development and progression of cancer, neuroinflammation, and neurodegeneration, as well as the current outlook on therapeutic targeting of lipid rafts.

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1744-1744
Author(s):  
Vineet Awasthi ◽  
Samir Mandal ◽  
Veena Papanna ◽  
L. Vijaya Mohan Rao ◽  
Usha Pendurthi

Abstract Tissue factor (TF) is a cellular receptor for clotting factor VIIa (VIIa) and the formation of TF-VIIa complexes on cell surfaces not only triggers the coagulation cascade but also transduces cell signaling via activation of protease-activated receptors (PARs), particularly PAR2. Although a number of recent studies provide valuable information on intracellular signaling pathways that are activated by TF-VIIa, the role of various cell surface components in mediating the interaction of TF-VIIa with PARs, and the subsequent signal transmittance are unknown. Unlike thrombin and trypsin, VIIa has to bind to its cellular receptor (TF) to activate PARs. The inability of TF-VIIa to effectively activate Ca2+ signaling and failure to desensitize the signaling to subsequently added trypsin suggest that the TF-VIIa is a poor activator of PAR2. Despite this, a number of studies have shown that VIIa is as effective as trypsin or PAR2 agonist peptide in activating intracellular signaling pathways and gene expression in cells expressing TF. Although the potential mechanism for this phenomenon is unknown, compartmentalization of TF, PAR2, and G-proteins in plasma membrane microdomains could facilitate a robust TF-VIIa-induced PAR2-mediated cell signaling. Although certain G-protein coupled receptors and G-proteins are known to be segregated into specialized membrane microdomains, lipid rafts and caveolae, little is known whether PARs are segregated into lipid rafts and caveolae, and how such segregation might influence their activation by TF-VIIa and the subsequent coupling to G-proteins. To obtain answers to some of these questions, in the present study, we have characterized TF and PAR2 distribution on tumor cell surfaces and investigated the role of lipid raft/caveolae in modulating the TF-VIIa signaling in tumor cells. Detergent extraction of cells followed by fractionation on sucrose gradient centrifugation showed that TF and PAR2 were distributed both in lipid rafts (low-density) and soluble fractions. Immunofluorescence confocal microscopy revealed that TF at the cell surface is localized in discrete plasma membrane microdomains, and colocalized with caveolin-1, a structural integral protein of caveolae, indicating caveolar localization of TF. Similar to TF, PAR2 also displayed significant punctuate staining and colocalization with caveloin-1. Further, a substantial fraction of TF and PAR2 was colocalized in caveolae. Disruption of lipid rafts/caveolae by ß-methyl cyclodextrin or filipin treatments reduced TF association with PAR2 in lipid rafts and caveolar fractions and impaired the TF-VIIa-induced cell signaling (PI hydrolysis and IL-8 gene expression). Additional studies showed that both mßCD and filipin treatments specifically impaired TF-VIIa cleavage of PAR2 and but had no significant effect on trypsin cleavage of PAR2. Disruption of caveolae with caveolin-1 silencing had no effect on the TF-VIIa coagulant activity but inhibited the TF-VIIa-induced cell signaling. In summary, the data presented herein demonstrate that TF localization at the cell membrane could influence different functions of TF differently. While caveolar localization of TF had no influence in propagating the procoagulant activity of TF, it is essential in supporting the TF-VIIa-induced cell signaling.


Blood ◽  
2001 ◽  
Vol 98 (5) ◽  
pp. 1489-1497 ◽  
Author(s):  
Mina D. Marmor ◽  
Michael Julius

Lipid rafts are plasma membrane microdomains characterized by a unique lipid environment enriched in gangliosides and cholesterol, leading to their insolubility in nonionic detergents. Many receptors are constitutively or inducibly localized in lipid rafts, which have been shown to function as platforms coordinating the induction of signaling pathways. In this report, the first evidence is provided for a role of these lipid microdomains in regulating interleukin-2 receptor (IL-2R) signaling. It is demonstrated that antibody- or ligand-mediated immobilization of components of lipid rafts, glycosyl-phosphatidyl-inositol–anchored proteins, and the GM1 ganglioside, respectively, inhibit IL-2–induced proliferation in T cells. IL-2Rα is shown to be constitutively enriched in rafts and further enriched in the presence of immobilized anti–Thy-1. In contrast, IL-2Rβ and IL-2Rγ, as well as JAK1 and JAK3, are found in soluble membrane fractions, and their localization is not altered by anti–Thy-1. IL-2–mediated heterotrimerization of IL-2R chains is shown to occur within soluble membrane fractions, exclusively, as is the activation of JAK1 and JAK3. As predicted by these results, the disruption of lipid raft integrity did not impair IL-2–induced signaling. Thus, the sequestration of IL-2Rα within lipid microdomains restricts its intermolecular interactions and regulates IL-2R signaling through impeding its association with IL-2Rβ and IL-2Rγ.


2006 ◽  
Vol 26 (1) ◽  
pp. 100-116 ◽  
Author(s):  
David Matallanas ◽  
Victoria Sanz-Moreno ◽  
Imanol Arozarena ◽  
Fernando Calvo ◽  
Lorena Agudo-Ibáñez ◽  
...  

ABSTRACT Ras proteins are distributed in different types of plasma membrane microdomains and endomembranes. However, how microlocalization affects the signals generated by Ras and its subsequent biological outputs is largely unknown. We have approached this question by selectively targeting RasV12 to different cellular sublocalizations. We show here that compartmentalization dictates Ras utilization of effectors and the intensity of its signals. Activated Ras can evoke enhanced proliferation and transformation from most of its platforms, with the exception of the Golgi complex. Furthermore, signals that promote survival emanate primarily from the endoplasmic reticulum pool. In addition, we have investigated the need for the different pools of endogenous Ras in the conveyance of upstream mitogenic and transforming signals. Using targeted RasN17 inhibitory mutants and in physiological contexts such as H-Ras/N-Ras double knockout fibroblasts, we demonstrate that Ras functions at lipid rafts and at the Golgi complex are fully dispensable for proliferation and transformation.


2004 ◽  
Vol 286 (4) ◽  
pp. C831-C839 ◽  
Author(s):  
Jeffrey T. Ferraro ◽  
Mani Daneshmand ◽  
Rena Bizios ◽  
Victor Rizzo

The preferential association of cholesterol and sphingolipids within plasma membranes forms organized compartments termed lipid rafts. Addition of caveolin proteins to this lipid milieu induces the formation of specialized invaginated plasma membrane structures called caveolae. Both lipid rafts and caveolae are purported to function in vesicular transport and cell signaling. We and others have shown that disassembly of rafts and caveolae through depletion of plasma membrane cholesterol mitigates mechanotransduction processes in endothelial cells. Because osteoblasts are subjected to fluid-mechanical forces, we hypothesize that cholesterol-rich plasma membrane microdomains also serve the mechanotransduction process in this cell type. Cultured human fetal osteoblasts were subjected to either sustained hydrostatic pressure or laminar shear stress using a pressure column or parallel-plate apparatus, respectively. We found that sustained hydrostatic pressure induced protein tyrosine phosphorylation, activation of extracellular signal-regulated kinase (ERK)1/2, and enhanced expression of c- fos in both time- and magnitude-dependent manners. Similar responses were observed in cells subjected to laminar shear stress. Both sustained hydrostatic pressure- and shear stress-induced signaling were significantly reduced in osteoblasts pre-exposed to either filipin or methyl-β-cyclodextrin. These mechanotransduction responses were restored on reconstitution of lipid rafts and caveolae, which suggests that cholesterol-rich plasma membrane microdomains participate in the mechanotransduction process in osteoblasts. In addition, mechanical force-induced phosphoproteins were localized within caveolin-containing membranes. These data support the concept that lipid rafts and caveolae serve a general function as cell surface mechanotransduction sites within the plasma membrane.


1998 ◽  
Vol 142 (1) ◽  
pp. 69-84 ◽  
Author(s):  
A.K. Kenworthy ◽  
M. Edidin

Membrane microdomains (“lipid rafts”) enriched in glycosylphosphatidylinositol (GPI)-anchored proteins, glycosphingolipids, and cholesterol have been implicated in events ranging from membrane trafficking to signal transduction. Although there is biochemical evidence for such membrane microdomains, they have not been visualized by light or electron microscopy. To probe for microdomains enriched in GPI- anchored proteins in intact cell membranes, we used a novel form of digital microscopy, imaging fluorescence resonance energy transfer (FRET), which extends the resolution of fluorescence microscopy to the molecular level (<100 Å). We detected significant energy transfer between donor- and acceptor-labeled antibodies against the GPI-anchored protein 5′ nucleotidase (5′ NT) at the apical membrane of MDCK cells. The efficiency of energy transfer correlated strongly with the surface density of the acceptor-labeled antibody. The FRET data conformed to theoretical predictions for two-dimensional FRET between randomly distributed molecules and were inconsistent with a model in which 5′ NT is constitutively clustered. Though we cannot completely exclude the possibility that some 5′ NT is in clusters, the data imply that most 5′ NT molecules are randomly distributed across the apical surface of MDCK cells. These findings constrain current models for lipid rafts and the membrane organization of GPI-anchored proteins.


2010 ◽  
Vol 191 (4) ◽  
pp. 771-781 ◽  
Author(s):  
Alexander Ludwig ◽  
Grant P. Otto ◽  
Kirsi Riento ◽  
Emily Hams ◽  
Padraic G. Fallon ◽  
...  

We studied the function of plasma membrane microdomains defined by the proteins flotillin 1 and flotillin 2 in uropod formation and neutrophil chemotaxis. Flotillins become concentrated in the uropod of neutrophils after exposure to chemoattractants such as N-formyl-Met-Leu-Phe (fMLP). Here, we show that mice lacking flotillin 1 do not have flotillin microdomains, and that recruitment of neutrophils toward fMLP in vivo is reduced in these mice. Ex vivo, migration of neutrophils through a resistive matrix is reduced in the absence of flotillin microdomains, but the machinery required for sensing chemoattractant functions normally. Flotillin microdomains specifically associate with myosin IIa, and spectrins. Both uropod formation and myosin IIa activity are compromised in flotillin 1 knockout neutrophils. We conclude that the association between flotillin microdomains and cortical cytoskeleton has important functions during neutrophil migration, in uropod formation, and in the regulation of myosin IIa.


2005 ◽  
Vol 79 (11) ◽  
pp. 7077-7086 ◽  
Author(s):  
Erica L. Brown ◽  
Douglas S. Lyles

ABSTRACT Many plasma membrane components are organized into detergent-resistant membrane microdomains referred to as lipid rafts. However, there is much less information about the organization of membrane components into microdomains outside of lipid rafts. Furthermore, there are few approaches to determine whether different membrane components are colocalized in microdomains as small as lipid rafts. We have previously described a new method of determining the extent of organization of proteins into membrane microdomains by analyzing the distribution of pairwise distances between immunogold particles in immunoelectron micrographs. We used this method to analyze the microdomains involved in the incorporation of the T-cell antigen CD4 into the envelope of vesicular stomatitis virus (VSV). In cells infected with a recombinant virus that expresses CD4 from the viral genome, both CD4 and the VSV envelope glycoprotein (G protein) were found in detergent-soluble (nonraft) membrane fractions. However, analysis of the distribution of CD4 and G protein in plasma membranes by immunoelectron microscopy showed that both were organized into membrane microdomains of similar sizes, approximately 100 to 150 nm. In regions of plasma membrane outside of virus budding sites, CD4 and G protein were present in separate membrane microdomains, as shown by double-label immunoelectron microscopy data. However, virus budding occurred from membrane microdomains that contained both G protein and CD4, and extended to approximately 300 nm, indicating that VSV pseudotype formation with CD4 occurs by clustering of G protein- and CD4-containing microdomains.


PROTEOMICS ◽  
2006 ◽  
Vol 6 (24) ◽  
pp. 6447-6454 ◽  
Author(s):  
François Le Naour ◽  
Magali André ◽  
Claude Boucheix ◽  
Eric Rubinstein

2006 ◽  
Vol 36 (10) ◽  
pp. 2795-2806 ◽  
Author(s):  
Petr Heneberg ◽  
Pavel Lebduška ◽  
L'ubica Dráberová ◽  
Jan Korb ◽  
Petr Dráber

Sign in / Sign up

Export Citation Format

Share Document