Reconstructing Signal Transduction Pathways: Challenges and Opportunities

2007 ◽  
Vol 1115 (1) ◽  
pp. 32-50 ◽  
Author(s):  
A. J. LEVINE ◽  
W. HU ◽  
Z. FENG ◽  
G. GIL
Biomolecules ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1475
Author(s):  
Veronica Ruta ◽  
Vittoria Pagliarini ◽  
Claudio Sette

Signal transduction pathways transmit the information received from external and internal cues and generate a response that allows the cell to adapt to changes in the surrounding environment. Signaling pathways trigger rapid responses by changing the activity or localization of existing molecules, as well as long-term responses that require the activation of gene expression programs. All steps involved in the regulation of gene expression, from transcription to processing and utilization of new transcripts, are modulated by multiple signal transduction pathways. This review provides a broad overview of the post-translational regulation of factors involved in RNA processing events by signal transduction pathways, with particular focus on the regulation of pre-mRNA splicing, cleavage and polyadenylation. The effects of several post-translational modifications (i.e., sumoylation, ubiquitination, methylation, acetylation and phosphorylation) on the expression, subcellular localization, stability and affinity for RNA and protein partners of many RNA-binding proteins are highlighted. Moreover, examples of how some of the most common signal transduction pathways can modulate biological processes through changes in RNA processing regulation are illustrated. Lastly, we discuss challenges and opportunities of therapeutic approaches that correct RNA processing defects and target signaling molecules.


NAR Cancer ◽  
2020 ◽  
Vol 2 (3) ◽  
Author(s):  
Rudolph L Juliano

Abstract Signal transduction pathways play key roles in the initiation, progression and dissemination of cancer. Thus, signaling molecules are attractive targets for cancer therapeutics and enormous efforts have gone into the development of small molecule inhibitors of these pathways. However, regrettably, there has been only moderate progress to date, primarily in connection with the RAS signaling pathway. Oligonucleotide-based drugs potentially offer several advantages for addressing signaling pathways, including their exquisite selectivity and their ability to exploit both enzymatic and nonenzymatic targets. Nonetheless, there are problems inherent in the oligonucleotide approach, not the least being the challenge of effectively delivering these complex molecules to intracellular sites within tumors. This survey article will provide a selective review of recent studies where oligonucleotides were used to address cancer signaling and will discuss both positive aspects and limitations of those studies. This will be set in the context of an overview of various cancer signaling pathways and small molecule approaches to regulate those pathways. The survey will also evaluate the challenges and opportunities implicit in the oligonucleotide-based approach to cancer signaling and will point out several possibilities for future research.


2020 ◽  
Vol 48 (2) ◽  
pp. 613-620
Author(s):  
Clara Ortegón Salas ◽  
Katharina Schneider ◽  
Christopher Horst Lillig ◽  
Manuela Gellert

Processing of and responding to various signals is an essential cellular function that influences survival, homeostasis, development, and cell death. Extra- or intracellular signals are perceived via specific receptors and transduced in a particular signalling pathway that results in a precise response. Reversible post-translational redox modifications of cysteinyl and methionyl residues have been characterised in countless signal transduction pathways. Due to the low reactivity of most sulfur-containing amino acid side chains with hydrogen peroxide, for instance, and also to ensure specificity, redox signalling requires catalysis, just like phosphorylation signalling requires kinases and phosphatases. While reducing enzymes of both cysteinyl- and methionyl-derivates have been characterised in great detail before, the discovery and characterisation of MICAL proteins evinced the first examples of specific oxidases in signal transduction. This article provides an overview of the functions of MICAL proteins in the redox regulation of cellular functions.


2002 ◽  
Author(s):  
Mary L. Cutler ◽  
Mari G. Cerrito ◽  
Treas Chopp ◽  
Weihan Wang

Sign in / Sign up

Export Citation Format

Share Document