scholarly journals Natural Language Processing for Automated Quantification of Brain Metastases Reported in Free-Text Radiology Reports

2019 ◽  
pp. 1-9 ◽  
Author(s):  
Joeky T. Senders ◽  
Aditya V. Karhade ◽  
David J. Cote ◽  
Alireza Mehrtash ◽  
Nayan Lamba ◽  
...  

PURPOSE Although the bulk of patient-generated health data are increasing exponentially, their use is impeded because most data come in unstructured format, namely as free-text clinical reports. A variety of natural language processing (NLP) methods have emerged to automate the processing of free text ranging from statistical to deep learning–based models; however, the optimal approach for medical text analysis remains to be determined. The aim of this study was to provide a head-to-head comparison of novel NLP techniques and inform future studies about their utility for automated medical text analysis. PATIENTS AND METHODS Magnetic resonance imaging reports of patients with brain metastases treated in two tertiary centers were retrieved and manually annotated using a binary classification (single metastasis v two or more metastases). Multiple bag-of-words and sequence-based NLP models were developed and compared after randomly splitting the annotated reports into training and test sets in an 80:20 ratio. RESULTS A total of 1,479 radiology reports of patients diagnosed with brain metastases were retrieved. The least absolute shrinkage and selection operator (LASSO) regression model demonstrated the best overall performance on the hold-out test set with an area under the receiver operating characteristic curve of 0.92 (95% CI, 0.89 to 0.94), accuracy of 83% (95% CI, 80% to 87%), calibration intercept of –0.06 (95% CI, –0.14 to 0.01), and calibration slope of 1.06 (95% CI, 0.95 to 1.17). CONCLUSION Among various NLP techniques, the bag-of-words approach combined with a LASSO regression model demonstrated the best overall performance in extracting binary outcomes from free-text clinical reports. This study provides a framework for the development of machine learning-based NLP models as well as a clinical vignette of patients diagnosed with brain metastases.

2020 ◽  
Author(s):  
Amy Y X Yu ◽  
Zhongyu A Liu ◽  
Chloe Pou-Prom ◽  
Kaitlyn Lopes ◽  
Moira K Kapral ◽  
...  

BACKGROUND Diagnostic neurovascular imaging data are important in stroke research, but obtaining these data typically requires laborious manual chart reviews. OBJECTIVE We aimed to determine the accuracy of a natural language processing (NLP) approach to extract information on the presence and location of vascular occlusions as well as other stroke-related attributes based on free-text reports. METHODS From the full reports of 1320 consecutive computed tomography (CT), CT angiography, and CT perfusion scans of the head and neck performed at a tertiary stroke center between October 2017 and January 2019, we manually extracted data on the presence of proximal large vessel occlusion (primary outcome), as well as distal vessel occlusion, ischemia, hemorrhage, Alberta stroke program early CT score (ASPECTS), and collateral status (secondary outcomes). Reports were randomly split into training (n=921) and validation (n=399) sets, and attributes were extracted using rule-based NLP. We reported the sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and the overall accuracy of the NLP approach relative to the manually extracted data. RESULTS The overall prevalence of large vessel occlusion was 12.2%. In the training sample, the NLP approach identified this attribute with an overall accuracy of 97.3% (95.5% sensitivity, 98.1% specificity, 84.1% PPV, and 99.4% NPV). In the validation set, the overall accuracy was 95.2% (90.0% sensitivity, 97.4% specificity, 76.3% PPV, and 98.5% NPV). The accuracy of identifying distal or basilar occlusion as well as hemorrhage was also high, but there were limitations in identifying cerebral ischemia, ASPECTS, and collateral status. CONCLUSIONS NLP may improve the efficiency of large-scale imaging data collection for stroke surveillance and research.


10.2196/24381 ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. e24381
Author(s):  
Amy Y X Yu ◽  
Zhongyu A Liu ◽  
Chloe Pou-Prom ◽  
Kaitlyn Lopes ◽  
Moira K Kapral ◽  
...  

Background Diagnostic neurovascular imaging data are important in stroke research, but obtaining these data typically requires laborious manual chart reviews. Objective We aimed to determine the accuracy of a natural language processing (NLP) approach to extract information on the presence and location of vascular occlusions as well as other stroke-related attributes based on free-text reports. Methods From the full reports of 1320 consecutive computed tomography (CT), CT angiography, and CT perfusion scans of the head and neck performed at a tertiary stroke center between October 2017 and January 2019, we manually extracted data on the presence of proximal large vessel occlusion (primary outcome), as well as distal vessel occlusion, ischemia, hemorrhage, Alberta stroke program early CT score (ASPECTS), and collateral status (secondary outcomes). Reports were randomly split into training (n=921) and validation (n=399) sets, and attributes were extracted using rule-based NLP. We reported the sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and the overall accuracy of the NLP approach relative to the manually extracted data. Results The overall prevalence of large vessel occlusion was 12.2%. In the training sample, the NLP approach identified this attribute with an overall accuracy of 97.3% (95.5% sensitivity, 98.1% specificity, 84.1% PPV, and 99.4% NPV). In the validation set, the overall accuracy was 95.2% (90.0% sensitivity, 97.4% specificity, 76.3% PPV, and 98.5% NPV). The accuracy of identifying distal or basilar occlusion as well as hemorrhage was also high, but there were limitations in identifying cerebral ischemia, ASPECTS, and collateral status. Conclusions NLP may improve the efficiency of large-scale imaging data collection for stroke surveillance and research.


2021 ◽  
Vol 39 (15_suppl) ◽  
pp. 1555-1555
Author(s):  
Eric J. Clayton ◽  
Imon Banerjee ◽  
Patrick J. Ward ◽  
Maggie D Howell ◽  
Beth Lohmueller ◽  
...  

1555 Background: Screening every patient for clinical trials is time-consuming, costly and inefficient. Developing an automated method for identifying patients who have potential disease progression, at the point where the practice first receives their radiology reports, but prior to the patient’s office visit, would greatly increase the efficiency of clinical trial operations and likely result in more patients being offered trial opportunities. Methods: Using Natural Language Processing (NLP) methodology, we developed a text parsing algorithm to automatically extract information about potential new disease or disease progression from multi-institutional, free-text radiology reports (CT, PET, bone scan, MRI or x-ray). We combined semantic dictionary mapping and machine learning techniques to normalize the linguistic and formatting variations in the text, training the XGBoost model particularly to achieve a high precision and accuracy to satisfy clinical trial screening requirements. In order to be comprehensive, we enhanced the model vocabulary using a multi-institutional dataset which includes reports from two academic institutions. Results: A dataset of 732 de-identified radiology reports were curated (two MDs agreed on potential new disease/dz progression vs stable) and the model was repeatedly re-trained for each fold where the folds were randomly selected. The final model achieved consistent precision (>0.87 precision) and accuracy (>0.87 accuracy). See the table for a summary of the results, by radiology report type. We are continuing work on the model to validate accuracy and precision using a new and unique set of reports. Conclusions: NLP systems can be used to identify patients who potentially have suffered new disease or disease progression and reduce the human effort in screening or clinical trials. Efforts are ongoing to integrate the NLP process into existing EHR reporting. New imaging reports sent via interface to the EHR will be extracted daily using a database query and will be provided via secure electronic transport to the NLP system. Patients with higher likelihood of disease progression will be automatically identified, and their reports routed to the clinical trials office for clinical trial screening parallel to physician EHR mailbox reporting. The over-arching goal of the project is to increase clinical trial enrollment. 5-fold cross-validation performance of the NLP model in terms of accuracy, precision and recall averaged across all the folds.[Table: see text]


2020 ◽  
Vol 28 (4) ◽  
pp. 1551-1579
Author(s):  
Leevi Rantala ◽  
Mika Mäntylä

AbstractSelf-admitted technical debt refers to sub-optimal development solutions that are expressed in written code comments or commits. We reproduce and improve on a prior work by Yan et al. (2018) on detecting commits that introduce self-admitted technical debt. We use multiple natural language processing methods: Bag-of-Words, topic modeling, and word embedding vectors. We study 5 open-source projects. Our NLP approach uses logistic Lasso regression from Glmnet to automatically select best predictor words. A manually labeled dataset from prior work that identified self-admitted technical debt from code level commits serves as ground truth. Our approach achieves + 0.15 better area under the ROC curve performance than a prior work, when comparing only commit message features, and + 0.03 better result overall when replacing manually selected features with automatically selected words. In both cases, the improvement was statistically significant (p < 0.0001). Our work has four main contributions, which are comparing different NLP techniques for SATD detection, improved results over previous work, showing how to generate generalizable predictor words when using multiple repositories, and producing a list of words correlating with SATD. As a concrete result, we release a list of the predictor words that correlate positively with SATD, as well as our used datasets and scripts to enable replication studies and to aid in the creation of future classifiers.


2020 ◽  
Author(s):  
Jacob Johnson ◽  
Grace Qiu ◽  
Christine Lamoureux ◽  
Jennifer Ngo ◽  
Lawrence Ngo

AbstractThough sophisticated algorithms have been developed for the classification of free-text radiology reports for pulmonary embolism (PE), their overall generalizability remains unvalidated given limitations in sample size and data homogeneity. We developed and validated a highly generalizable deep-learning based NLP algorithm for this purpose with data sourced from over 2,000 hospital sites and 500 radiologists. The algorithm achieved an AUCROC of 0.995 on chest angiography studies and 0.994 on non-angiography studies for the presence or absence of PE. The high accuracy achieved on this large and heterogeneous dataset allows for the possibility of application in large multi-center radiology practices as well as for deployment at novel sites without significant degradation in performance.


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 159110-159119
Author(s):  
Honglei Liu ◽  
Yan Xu ◽  
Zhiqiang Zhang ◽  
Ni Wang ◽  
Yanqun Huang ◽  
...  

2017 ◽  
Vol 19 (suppl_6) ◽  
pp. vi44-vi45
Author(s):  
David Cote ◽  
Joeky Senders ◽  
Aditya Karhade ◽  
Saksham Gupta ◽  
Nayan Lamba ◽  
...  

2019 ◽  
Vol 5 (suppl) ◽  
pp. 49-49
Author(s):  
Christi French ◽  
Dax Kurbegov ◽  
David R. Spigel ◽  
Maciek Makowski ◽  
Samantha Terker ◽  
...  

49 Background: Pulmonary nodule incidental findings challenge providers to balance resource efficiency and high clinical quality. Incidental findings tend to be under evaluated with studies reporting appropriate follow-up rates as low as 29%. The efficient identification of patients with high risk nodules is foundational to ensuring appropriate follow-up and requires the clinical reading and classification of radiology reports. We tested the feasibility of automating this process with natural language processing (NLP) and machine learning (ML). Methods: In cooperation with Sarah Cannon, the Cancer Institute of HCA Healthcare, we conducted a series of experiments on 8,879 free-text, narrative CT radiology reports. A representative sample of health system ED, IP, and OP reports dated from Dec 2015 - April 2017 were divided into a development set for model training and validation, and a test set to evaluate model performance. A “Nodule Model” was trained to detect the reported presence of a pulmonary nodule and a rules-based “Size Model” was developed to extract the size of the nodule in mms. Reports were bucketed into three prediction groups: ≥ 6 mm, <6 mm, and no size indicated. Nodules were placed in a queue for follow-up if the nodule was predicted ≥ 6 mm, or if the nodule had no size indicated and the report contained the word “mass.” The Fleischner Society Guidelines and clinical review informed these definitions. Results: Precision and recall metrics were calculated for multiple model thresholds. A threshold was selected based on the validation set calculations and a success criterion of 90% queue precision was selected to minimize false positives. On the test dataset, the F1 measure of the entire pipeline was 72.9%, recall was 60.3%, and queue precision was 90.2%, exceeding success criteria. Conclusions: The experiments demonstrate the feasibility of technology to automate the detection and classification of pulmonary nodule incidental findings in radiology reports. This approach promises to improve healthcare quality by increasing the rate of appropriate lung nodule incidental finding follow-up and treatment without excessive labor or risking overutilization.


2017 ◽  
Vol 31 (1) ◽  
pp. 84-90 ◽  
Author(s):  
Hannu T. Huhdanpaa ◽  
W. Katherine Tan ◽  
Sean D. Rundell ◽  
Pradeep Suri ◽  
Falgun H. Chokshi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document