Genome-wide analysis of Philadelphia chromosome-positive (Ph+) acute lymphoblastic leukemia (ALL) patients identified recurrent copy number variations in genes regulating the cell cycle and the B-cell differentiation

2008 ◽  
Vol 26 (15_suppl) ◽  
pp. 7022-7022
Author(s):  
I. Iacobucci ◽  
E. Ottaviani ◽  
A. Astolfi ◽  
N. Testoni ◽  
T. Storlazzi ◽  
...  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Klementina Crepinsek ◽  
Gasper Marinsek ◽  
Marko Kavcic ◽  
Tomaž Prelog ◽  
Lidija Kitanovski ◽  
...  

Abstract Background IKZF1 gene deletions have been identified as a poor prognostic factor in pediatric B-cell acute lymphoblastic leukemia (B-ALL), especially in the presence of co-occurring deletions (IKZF1 plus profile). This study aimed to determine the frequency of IKZF1 deletions and deletions in other B-cell differentiation and cell cycle control genes, and their prognostic impact in Slovenian pediatric B-ALL patients. Patients and methods We studied a cohort of 99 patients diagnosed with B-ALL from January 2012 to December 2020 and treated according to the ALL IC-BFM 2009 protocol. Eighty-eight bone marrow or peripheral blood samples were analysed for copy number variations (CNVs) using the SALSA MLPA P335 ALL-IKZF1 probemix. Results At least one CNV was detected in more than 65% of analysed samples. The most frequently altered genes were PAX5 and CDKN2A/B (30.7%, 26.1%, and 25.0%, respectively). Deletions in IKZF1 were present in 18.2% of analysed samples and were associated with an inferior 5-year event-free survival (EFS; 54.8% vs. 85.9%, p = 0.016). The IKZF1 plus profile was identified in 12.5% of the analysed samples, and these patients had an inferior 5-year EFS than those with deletions in IKZF1 only and those without deletions (50.8% vs. 75.0% vs. 85.9%, respectively, p = 0.049). Overall survival (OS) was also worse in patients with the IKZF1 plus profile than those with deletions in IKZF1 only and those without deletions (5-year OS 76.2% vs. 100% vs. 93.0%, respectively). However, the difference between the groups was not statistically significant. Conclusions Our results are in concordance with the results obtained in larger cooperative clinical trials. Copy number variations analysis using the SALSA MLPA kit is a reliable tool for initial diagnostic approach in children with B-ALL, even in smaller institutions in low- and middle-income countries.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 231-231
Author(s):  
Heike Pfeifer ◽  
Katharina Raum ◽  
Sandra Markovic ◽  
Stephanie Fey ◽  
Julia Obländer ◽  
...  

Abstract Philadelphia chromosome positive (Ph+) acute lymphoblastic leukemia (ALL) is traditionally considered the subtype with the worst prognosis, despite recent improvements in long-term survival brought about by the use of tyrosine kinase inhibitors (TKI) such as imatinib or dasatinib. Allogeneic stem cell transplantation (aSCT) remains the most effective curative post-remission therapy in adults but appears to be less critical in children, indicating a substantial clinical and biological heterogeneity within the subgroup of Ph+ ALL. The ability to segregate Ph+ ALL into subgroups with different prognosis on the basis of reductions of BCR-ABL1 transcript levels during therapy lends further support to the heterogeneity of this type of leukemia, for which the genetic basis is not known. Microarray-based genome-wide profiling studies conducted predominantly in pediatric ALL patients have recently revealed novel recurrent submicroscopic aberrations of genes involved in B-cell development and cell cycle regulation, such as CDKN2A/B, IKZF1, PAX5, ETV6, RB1, BTG1 and EBF1. Deletions of IKZF1, CDKN2A/B and PAX genes have received the most attention due to their high frequency particularly in BCR-ABL1-positive ALL and their association with an inferior prognosis in the setting of combined TKI and chemotherapy. Their prognostic relevance in the setting of allogeneic SCT for adult or pediatric high risk BCP-ALL is not known. We therefore examined whether the negative prognostic role of IKZF1 aberrations and other frequent microdeletions of genes associated with B-cell development can be overcome by allogeneic SCT in CR1. A total of 137 newly diagnosed Ph+ ALL pts. (median age 42 years, range 18-64y, 79 male 58 female) treated within the prospective multicenter GMALL study 07/03 were analyzed. 96 of these patients underwent aSCT in first complete remission (CR), 8 pts. were primary refractory, 12 CR pts. did not undergo aSCT and relapsed, 11 pts. died during induction. Genome-wide copy number analysis in search for acquired copy number alterations (CNA) was performed with Affymetrix SNP 6.0 arrays with anonymous references. Copy number polymorphisms were excluded from the data by comparison with known copy number polymorphisms registered in the UCSC genome browser http://genome.ucsc.edu/, (hg-18). Putatively acquired CNAs were validated by multiplex ligation-dependent probe amplification (MLPA) and germline matched SNP array analysis of n=20 samples within the study. Of the 96 pts. transplanted in CR1, 48 remain in CR (CCR), 30 pts. relapsed after aSCT and 7 died of treatment related causes, survival data only are available for one patient. CDKN2A/B genomic alterations were identified in 41% (40/97) of patients, deletions of IKZF1 and PAX5 were observed in 61% (59/97) and 39% (38/97) of pts., respectively. Univariate analysis of the complete cohort revealed that deletion of CDKN2A/B was the only aberration with a statistically significant negative effect on overall survival (OS) (p=0.003). Among patients transplanted in CR1, IKZF1-deletions were associated with inferior median time to relapse after SCT (56 mos vs. n.r., p=0.01), DFS from SCT (15.6 mos. vs. n.r.; p=0.024) and OS (median 40 mos. vs. not reached (n.r.) p=0.04) compared with the IKZF1 wildtype cohort. Similarly, the prognosis of pts. with CDKN2A/B deletions was inferior in terms of DFS (median 10.6 mos. vs. n.r.; p=0.022) and OS (median 25 mos. vs. n.r.; p=0.01), but not of remission duration from SCT. PAX5 (p=0.07) but not the combination of all three lesions (p=0.14) showed a trend to a worse prognosis. Of the more uncommon genetic aberrations BTLA, EBF1, ETV6, RB1 and BTG1, only the latter was associated with a lower probability of remaining in CR (0% vs. 67% at 5 years; p=0.012) or DFS (0% vs. 52% at 5 years; p=0.043), with a trend towards shorter OS (median 35 mos. vs. 87 mos; p=0.078). In conclusion, genomic lesions of IKZF1, CDKN2 and PAX5 identify a subgroup of Ph+ ALL pts. who have an inferior survival despite undergoing aSCT in CR1. Their poor outcome is attributable primarily to a high relapse rate after SCT, emphasizing the need to introduce additional treatment elements prior to and after aSCT. Disclosures: No relevant conflicts of interest to declare.


2011 ◽  
Vol 7 ◽  
pp. S193-S194
Author(s):  
Ekaterina Rogaeva ◽  
Mahdi Ghani ◽  
Dalila Pinto ◽  
Joseph Lee ◽  
Christiane Reitz ◽  
...  

Haematologica ◽  
2019 ◽  
Vol 104 (6) ◽  
pp. 1176-1188 ◽  
Author(s):  
Antonio Agraz-Doblas ◽  
Clara Bueno ◽  
Rachael Bashford-Rogers ◽  
Anindita Roy ◽  
Pauline Schneider ◽  
...  

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 844-844
Author(s):  
Yiguo Hu ◽  
Linghong Kong ◽  
Kevin Staples ◽  
Kevin Mills ◽  
John G. Monroe ◽  
...  

Abstract The BCR-ABL oncogene induces human Philadelphia-positive (Ph+) B-cell acute lymphoblastic leukemia (B-ALL) and chronic myeloid leukemia (CML) that advances to acute phase of CML called blast crisis. In this acute phase, CML patients can develop either B-ALL or acute myeloid leukemia. In B-ALL, differentiation of leukemic cells are blocked at pro-/pre-B stage, and the underlying mechanism is unknown. We hypothesize that this blockade of B-cell differentiation may be important for the development of B-ALL induced by BCR-ABL, and if so, promotion of B-leukemic cell differentiation would create a novel therapeutic strategy for B-ALL. To test this hypothesis, we first compared the percentages of IgM+ B-leukemic cells in BALB/c and C57BL/6 (B6) mice with BCR-ABL-induced B-ALL, because we have previously found that B-ALL develops more quickly in BALB/c mice than in B6 mice (Li et al, J. Exp. Med.189:1399–1412, 1999). We expressed BCR-ABL in bone marrow (BM) using retroviral transduction and transplantation in these two different strains of inbred mice to induce B-ALL. There were significantly more peripheral blood B220+ B cells in BALB/c B-ALL mice than those in B6 mice, correlating to faster B-ALL in BALB/c mice than in B6 mice. Among these B220+ cells, IgM+ cells were much less in BALB/c mice than in B6 mice. We also compared rearrangement of the B cell antigen receptor (BCR) heavy chains (m chains) between BALB/c and B6 backgrounds using BCR-ABL-expressing pro-B cell lines isolated from the B-ALL mice. Normal m chains rearrangement was found in B6 leukemic cells, but not in BALB/c leukemic cells. These results indicate that more differentiated B-leukemic cells are associated with less aggressive disease. To further demonstrate the role of blockade of B-cell differentiation in B-ALL development, we induced B-leukemic cell differentiation by co-expression of BCR-ABL and intact immunoregulatory tyrosine activation motifs (ITAM) contained in immunoglobulin (Ig)_/Igß complexes in BM cells of B-ALL mice, comparing to expression of BCR-ABL alone. We treated these mice with imatinib (orally, 100 mg/kg, twice a day). The treated mice with B-ALL induced by co-expression of BCR-ABL and ITAM lived three-week longer than those with B-ALL induced by BCR-ABL only, with some mice in long-term remission. Prolonged survival was associated with 50% increased B220+/IgM+ B-leukemic cells in peripheral blood of the mice. Taken together, our results demonstrate that blockade of B-cell differentiation is critical for the development of B-ALL induced by BCR-ABL, and provide a rationale for combination therapy of B-ALL with imatinib and induction of leukemic cell differentiation.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2466-2466 ◽  
Author(s):  
Laura B. Ramsey ◽  
John C Panetta ◽  
Colton Smith ◽  
Wenjian Yang ◽  
Yiping Fan ◽  
...  

Abstract Abstract 2466 High-dose methotrexate (HDMTX) is an important element of chemotherapy for acute lymphoblastic leukemia (ALL) and other malignancies. Methotrexate clearance influences cure and toxicity in children with acute lymphoblastic leukemia (ALL). HDMTX schedules and doses vary widely among treatment protocols. The Children's Oncology Group (COG) tested the efficacy of 6 courses of 2 g/m2 over 4 hours versus 1 g/m2 over 24 hours (P9904 and P9905 protocols). Patients were assigned to one of four arms for consolidation: A, 24-hour methotrexate infusion (1 g/m2) and no delayed intensification (DI); B, 4-hour methotrexate infusion (2 g/m2) with no DI; C, 24-hour methotrexate infusion with DI; D, 4-hour methotrexate infusion with DI. We estimated methotrexate clearance for 1279 patients treated on these protocols, with two plasma MTX concentrations per course, using a Bayesian pharmacokinetic modeling approach. Germline genetic variation was assessed using the Affymetrix 6.0 array, and other single nucleotide polymorphisms (SNPs) were imputed based on 1000 Genomes reference data, yielding 5.2 million SNP genotypes evaluable per patient. Average MTX clearance was highly variable, with a median (range) of 164 (65–355) and 109 (49–290) ml/min/m2 for the 24-hour and 4-hour infusions, respectively. Methotrexate clearance was lower in older children (p = 7 × 10−7), girls (p = 2.7 × 10−4), and patients who received a delayed intensification phase during consolidation (p = 0.0022). Adjusting for age, gender, race, and treatment arm, a genome-wide analysis showed that methotrexate clearance was associated with polymorphisms in SLCO1B1(p = 2.1 × 10−11), a gene that encodes for an organic anion transporter that is known to transport methotrexate. This replicates our previous findings (Trevino et al, J Clin Oncol. 2009;27(35):5972-8) that polymorphisms in SLCO1B1 influence methotrexate clearance in ALL patients treated on St. Jude protocols with three different HDMTX schedules. In a combined meta-analysis including the 1279 COG patients and 699 St. Jude patients, and adjusting for age, gender, race, and treatment arm, the association of methotrexate clearance with SLCO1B1 SNP rs4149056 yields a p-value of 3.1 × 10−19 (Figure). Even after adjustment for the rs4149056 SNP, other polymorphisms in SLCO1B1 remained significantly related to methotrexate clearance, indicating that there are multiple variants in SLCO1B1 that can influence methotrexate clearance. Validation of the association of this gene with five different treatment regimens of methotrexate solidifies the robustness of this pharmacogenomic determinant of methotrexate clearance. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 233-233
Author(s):  
Cai Chen ◽  
Christoph Bartenhagen ◽  
Michael Gombert ◽  
Vera Okpanyi ◽  
Vera Binder ◽  
...  

Abstract High hyperdiploid acute lymphoblastic leukemia (HeH-ALL) is characterized by 51-67 chromosomes and nonrandom gains of specific chromosomes (X, 4, 6, 10, 14, 17, 18, and 21). It presents the most frequent numerical cytogenetic alteration in childhood pre B-cell ALL occurring in 25-30% of cases. Recurrent disease will affect 15-20%. Pre-leukemic HeH clones are generated in utero, but cooperating oncogenic lesions are necessary for overt leukemia and remain to be determined. Recently, a phenomenon termed chromothripsis has been described in which massive structural variations occur in a single aberrant mitosis. Whole or partial chromosomes are shattered and some fragments are lost in the process of rejoining. Thus, characteristically, chromosomal copy numbers oscillate between two copy number states. Chromothripsis has been suggested to be a tumor-driving alteration that may be present in 2-3% of all human cancers. Its role as a potential cooperating or initiating lesion in HeH-ALL has not been determined. We applied state-of-the-art whole-genome next-generation-sequencing to analyze structural variations in six pediatric patients with recurrent HeH-ALL. Matched sample sets taken at diagnosis, remission and/or relapse were compared. Paired end sequencing was carried out on a Genome Analyzer IIx or a HiSeq 2000 (Illumina), respectively. Reads were aligned against the human reference genome (GRCh37) using BWA. Translocations were detected by GASV. Copy number variations were analyzed by FREEC. Structural variations were validated by PCR/Sanger sequencing and FISH. Of the six patients analyzed, five harbored on average one interchromosomal translocation or intrachromosomal inversion, but one patient presented with massive genomic rearrangements (Figure). These affected chromosome 3, 11, 12 and 20. Ten copy number shifts on chromosome 3 oscillating between two copy number states (2 and 3) indicated that these rearrangements were caused by chromothripsis. Breakpoint sequencing revealed that one of the identified translocations (t(12;20)(p13.1;p12.3)), was indeed a three-loci-rearrangement composed of small fragments derived from chromosomes 3, 12 and 20. Characteristically for chromothripsis, the breakpoints clustered closely. Three breakpoints separated by 224 bp and 64 kb were located in the transducin (beta)-like X-linked receptor 1 (TBL1XR1) gene. Other genes repeatedly targeted included the MACRO domain-containing protein 2 (MACROD2) gene (a deacetylase involved in deacetylation of lysine residues in histones and other proteins), the KIAA1467 gene (a transmembrane protein of the integrin alpha FG-GAP repeat containing 3 (ITFG3) family), and a novel regulatory lincRNA (ENSG00000243276). MACROD2 was previously observed as a target of chromothripsis in a colorectal carcinoma. Thus, the characterized breakpoints may identify fragile genomic sites prone to chromothriptic rearrangement. DNA repair was effectuated by non-homologous-end-joining as typical addition of non-template nucleotides with microhomologies of two to four nucleotides at the breakpoints demonstrated. Copy number profiles of this patient showed that at least two distinct leukemic clones could be identified at diagnosis. One had acquired chromothriptic alterations and presented the dominant clone at relapse indicating chemotherapy resistance and tumor-driving potential. Prior whole-exome sequencing did not reveal mutations in known oncogenes or tumor suppressor genes. Therefore, loss of function or expression of genes affected by chromosomal rearrangements, such as TBL1XR1 that is recurrently mutated in childhood ALL with ETV6-RUNX1 translocation, may account for the tumor-driving effect. All leukemic cells at diagnosis showed conformity concerning number and pattern of whole chromosome gains demonstrating that chromothripsis was not an initiating oncogenic event, but occurred secondary to high hyperdiploidy. Further aberrations (t(4;7), loss of 4q) were gained by the chromothriptic clone and could be detected by FISH in minor subclones pointing at ongoing clonal evolution. Taken together, our study reveals chromothripsis as a novel assisting and tumor-driving lesion in HeH ALL. Chromothripsis in HeH-ALL. Copy number variations and translocations at diagnosis (left) and relapse (right). (magenta: chromothriptic translocations; green: other translocations) Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 3777-3777 ◽  
Author(s):  
Jae-Woong Lee ◽  
Maike Buchner ◽  
Huimin Geng ◽  
Srividya Swaminathan ◽  
Eugene Park ◽  
...  

Abstract Background: Growth arrest-specific gene 7 (Gas7) functions as an adaptor for SH2- and SH3-containing proteins, in particular in cells that undergo growth arrest. Gas7 is abundantly expressed in the brain and is involved in neuronal differentiation. Interestingly, MLL-GAS7 fusion molecules resulting from the t(11;17)(q23;p13) chromosomal translocation have been reported in treatment-related acute myeloid leukemia (AML; Megonigal et al., 2000) and in a pediatric acute lymphoblastic leukemia (ALL). While the function of MLL has been extensively studied, the role of its fusion partner GAS7 in normal hematopoiesis and leukemia has not been elucidated. Results: Studying gene expression changes during normal B cell development, we identified Gas7 as the gene with the strongest relative increase at the pre-B cell receptor checkpoint. At the transition from IL7-dependent Fraction C’ to IL7-independent small resting pre-B cells (Fraction D), GAS7 mRNA levels were upregulated by >13-fold in both human and mouse B cell progenitors. Withdrawal of IL7 cytokine signaling and Cre-mediated conditional deletion of Stat5ab recapitulated the strong increase of GAS7 expression under cell culture conditions. These finding suggest that GAS7 is part of an adaptive response of differentiating pre-B cells to attenuation of cytokine/Stat5 signaling. Consistent with this scenario, we found that Gas7-/-pre-B cells undergo accelerated differentiation, including spontaneous Ig κ light chain gene recombination and loss of Stat5-signaling. Conversely, overexpression of GAS7, reduced responsiveness of pre-B cells to normal differentiation stimuli. These findings suggest that the linker molecule GAS7 is a negative regulator of pre-B cell differentiation. Likewise, we found that tyrosine kinase inhibitor treatment of human Ph+ ALL cells resulted in a strong increased of GAS7 expression, in parallel with loss of Stat5 function. To elucidate the function of Gas7 in B cell lineage leukemia, we transformed bone marrow pre-B cells from Gas7-/- mice with BCR-ABL1. Gas7 deficient Ph+ ALL cells showed decreased proliferation with reduced S phase and increased apoptosis. In agreement with effects of Stat5 on the sensitivity of Ph+ ALL cells against tyrosine kinase inhibitors (TKIs), Gas7 deficient Ph+ ALL cells showed massively increased susceptibility to Imatinib-induced apoptosis. In addition, absence of Gas7 caused loss of self-renewal capacity and failure to form colonies in methylcellulose assay. Co-immunoprecipitation experiments with flag tagged GAS7 in patient-derived Ph+ALL cells revealed that GAS7 physically interacts with STAT5 and retains STAT5-Y694 in an active conformation.Thereby, GAS7 can propagate even weak Stat5 activity and maintain residual cytokine or BCR-ABL1 oncogenic signaling in normal and malignant pre-B cells. Conclusions: Here show that GAS7 functions as an important positive regulator of Stat5 downstream of cytokine receptors in normal pre-B cells and downstream of BCR-ABL1 and other oncogenes in leukemia. Owing to the GAS7-dependent reinforcement of Stat5-dependent survival and proliferation signaling, normal and leukemic pre-B cells can survive periods of reduced cytokine/oncogene signaling. These findings suggest that the interaction interface between GAS7 and Stat5 represents a potential target for small molecule scaffolds and peptides. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document