Genomic Characterization of Primary Invasive Lobular Breast Cancer

2016 ◽  
Vol 34 (16) ◽  
pp. 1872-1881 ◽  
Author(s):  
Christine Desmedt ◽  
Gabriele Zoppoli ◽  
Gunes Gundem ◽  
Giancarlo Pruneri ◽  
Denis Larsimont ◽  
...  

Purpose Invasive lobular breast cancer (ILBC) is the second most common histologic subtype after invasive ductal breast cancer (IDBC). Despite clinical and pathologic differences, ILBC is still treated as IDBC. We aimed to identify genomic alterations in ILBC with potential clinical implications. Methods From an initial 630 ILBC primary tumors, we interrogated oncogenic substitutions and insertions and deletions of 360 cancer genes and genome-wide copy number aberrations in 413 and 170 ILBC samples, respectively, and correlated those findings with clinicopathologic and outcome features. Results Besides the high mutation frequency of CDH1 in 65% of tumors, alterations in one of the three key genes of the phosphatidylinositol 3-kinase pathway, PIK3CA, PTEN, and AKT1, were present in more than one-half of the cases. HER2 and HER3 were mutated in 5.1% and 3.6% of the tumors, with most of these mutations having a proven role in activating the human epidermal growth factor receptor/ERBB pathway. Mutations in FOXA1 and ESR1 copy number gains were detected in 9% and 25% of the samples. All these alterations were more frequent in ILBC than in IDBC. The histologic diversity of ILBC was associated with specific alterations, such as enrichment for HER2 mutations in the mixed, nonclassic, and ESR1 gains in the solid subtype. Survival analyses revealed that chromosome 1q and 11p gains showed independent prognostic value in ILBC and that HER2 and AKT1 mutations were associated with increased risk of early relapse. Conclusion This study demonstrates that we can now begin to individualize the treatment of ILBC, with HER2, HER3, and AKT1 mutations representing high-prevalence therapeutic targets and FOXA1 mutations and ESR1 gains deserving urgent dedicated clinical investigation, especially in the context of endocrine treatment.

2012 ◽  
Vol 38 (5) ◽  
pp. 441
Author(s):  
Fiona Langlands ◽  
David Dodwell ◽  
Jonathan White ◽  
Olive Kearins ◽  
Shaun Cheung ◽  
...  

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Sanne Løkkegaard ◽  
Daniel Elias ◽  
Carla L. Alves ◽  
Martin V. Bennetzen ◽  
Anne-Vibeke Lænkholm ◽  
...  

AbstractResistance to endocrine therapy in estrogen receptor-positive (ER+) breast cancer is a major clinical problem with poorly understood mechanisms. There is an unmet need for prognostic and predictive biomarkers to allow appropriate therapeutic targeting. We evaluated the mechanism by which minichromosome maintenance protein 3 (MCM3) influences endocrine resistance and its predictive/prognostic potential in ER+ breast cancer. We discovered that ER+ breast cancer cells survive tamoxifen and letrozole treatments through upregulation of minichromosome maintenance proteins (MCMs), including MCM3, which are key molecules in the cell cycle and DNA replication. Lowering MCM3 expression in endocrine-resistant cells restored drug sensitivity and altered phosphorylation of cell cycle regulators, including p53(Ser315,33), CHK1(Ser317), and cdc25b(Ser323), suggesting that the interaction of MCM3 with cell cycle proteins is an important mechanism of overcoming replicative stress and anti-proliferative effects of endocrine treatments. Interestingly, the MCM3 levels did not affect the efficacy of growth inhibitory by CDK4/6 inhibitors. Evaluation of MCM3 levels in primary tumors from four independent cohorts of breast cancer patients receiving adjuvant tamoxifen mono-therapy or no adjuvant treatment, including the Stockholm tamoxifen (STO-3) trial, showed MCM3 to be an independent prognostic marker adding information beyond Ki67. In addition, MCM3 was shown to be a predictive marker of response to endocrine treatment. Our study reveals a coordinated signaling network centered around MCM3 that limits response to endocrine therapy in ER+ breast cancer and identifies MCM3 as a clinically useful prognostic and predictive biomarker that allows personalized treatment of ER+ breast cancer patients.


2021 ◽  
Author(s):  
Elke M. van Veen ◽  
D. Gareth Evans ◽  
Elaine F. Harkness ◽  
Helen J. Byers ◽  
Jamie M. Ellingford ◽  
...  

AbstractPurpose: Lobular breast cancer (LBC) accounts for ~ 15% of breast cancer. Here, we studied the frequency of pathogenic germline variants (PGVs) in an extended panel of genes in women affected with LBC. Methods: 302 women with LBC and 1567 without breast cancer were tested for BRCA1/2 PGVs. A subset of 134 LBC affected women who tested negative for BRCA1/2 PGVs underwent extended screening, including: ATM, CDH1, CHEK2, NBN, PALB2, PTEN, RAD50, RAD51D, and TP53.Results: 35 PGVs were identified in the group with LBC, of which 22 were in BRCA1/2. Ten actionable PGVs were identified in additional genes (ATM(4), CDH1(1), CHEK2(1), PALB2(2) and TP53(2)). Overall, PGVs in three genes conferred a significant increased risk for LBC. Odds ratios (ORs) were: BRCA1: OR = 13.17 (95%CI 2.83–66.38; P = 0.0017), BRCA2: OR = 10.33 (95%CI 4.58–23.95; P < 0.0001); and ATM: OR = 8.01 (95%CI 2.52–29.92; P = 0.0053). We did not detect an increased risk of LBC for PALB2, CDH1 or CHEK2. Conclusion: The overall PGV detection rate was 11.59%, with similar rates of BRCA1/2 (7.28%) PGVs as for other actionable PGVs (7.46%), indicating a benefit for extended panel genetic testing in LBC. We also report a previously unrecognised association of pathogenic variants in ATM with LBC.


2019 ◽  
Vol 1 (2) ◽  
pp. 84-91
Author(s):  
Jonathan V Nguyen ◽  
Martha H Thomas

Abstract The majority of our hereditary breast cancer genes incur not only an increased risk for breast cancer but for other malignancies as well. Knowing whether an individual carries a pathogenic variant in a hereditary breast cancer gene can affect not only screening for the patient but for his or her family members as well. Identifying and appropriately testing individuals via multigene panels allows for risk reduction and early surveillance in at-risk individuals. Radiologists can serve as first-line identifiers of women who are at risk of having an inherited predisposition to breast cancer because they are interacting with all women receiving routine screening mammograms, and collecting family history suggestive of the presence of a mutation. We outline here the 11 genes associated with high breast cancer risk discussed in the National Comprehensive Cancer Network Genetic/Familial High-Risk: Breast and Ovarian (version 3.2019) as having additional breast cancer screening recommendations outside of annual mammography to serve as a guide for breast cancer screening and risk reduction, as well as recommendations for surveillance of nonbreast cancers.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Felix Grassmann ◽  
Wei He ◽  
Mikael Eriksson ◽  
Marike Gabrielson ◽  
Per Hall ◽  
...  

Abstract Breast cancer (BC) patients diagnosed between two screenings (interval cancers) are more likely than screen-detected patients to carry rare deleterious mutations in cancer genes potentially leading to increased risk for other non-breast cancer (non-BC) tumors. In this study, we include 14,846 women diagnosed with BC of which 1,772 are interval and 13,074 screen-detected. Compared to women with screen-detected cancers, interval breast cancer patients are more likely to have a non-BC tumor before (Odds ratio (OR): 1.43 [1.19–1.70], P = 9.4 x 10−5) and after (OR: 1.28 [1.14–1.44], P = 4.70 x 10−5) breast cancer diagnosis, are more likely to report a family history of non-BC tumors and have a lower genetic risk score based on common variants for non-BC tumors. In conclusion, interval breast cancer is associated with other tumors and common cancer variants are unlikely to be responsible for this association. These findings could have implications for future screening and prevention programs.


Sign in / Sign up

Export Citation Format

Share Document