Immune signatures associated with response to neoadjuvant PD-1 blockade in oral cavity cancer.

2019 ◽  
Vol 37 (15_suppl) ◽  
pp. 6055-6055
Author(s):  
Hannah Knochelmann ◽  
Joshua Dean Horton ◽  
Megan Meek ◽  
Carsten Krieg ◽  
Cynthia Dawn Timmers ◽  
...  

6055 Background: PD-1 inhibition therapy has revolutionized clinical medicine as it can mediate durable responses in a small cohort of patients. Yet, it remains incompletely understood why these patients respond. To address this question, we studied patients with oral cavity squamous cell carcinoma (OCSCC) to elucidate immune phenotypes associated with response to nivolumab. Methods: We defined the immune profile from the blood and tumor of patients on neoadjuvant nivolumab. We tested if tumor-infiltrating lymphocytes (TIL) could be preferentially expanded ex vivo from nivolumab-responsive patients versus those who were either non-responsive or had never received nivolumab. During the course of therapy, we comprehensively profiled a number of surface markers on patients’ T cells to define their activation status, cytotoxic capacity and memory phenotype. Moreover, the immune profile of the peripheral blood was assessed pre- and post-nivolumab using high dimensional mass cytometry. Results: Regardless of PD-1 therapy, TIL were successfully expanded from 11 of the 12 patients. TIL were comprised of both CD4+ and CD8+ T cells. Additional investigation revealed that the frequency of CD4+ T cells and effector memory T cells in TIL correlated with disease progression (CD4: p = 0.04, r = 0.74, effector memory: p = 0.046, r = 0.74). TILs from responders expressed higher CD26 (p = 0.007, r = -0.88) and Tim3 (p = 0.045, r = -0.74) while PD-1, Lag3, and Ox40 were not differentially expressed based on response. Spearman correlation and Mann Whitney U test were used to assess phenotypic differences. Conclusions: We demonstrate, for the first time, that TIL can be reliably expanded from OCSCC patients on neoadjuvant nivolumab. Moreover, individuals who were responsive to PD-1 blockade had TIL expressing high levels of CD26 and Tim3. Future studies will explore if these markers are predictive of responses and if they contribute to treatment outcome.

2011 ◽  
Vol 2011 ◽  
pp. 1-6 ◽  
Author(s):  
Niels Junker ◽  
Per thor Straten ◽  
Mads Hald Andersen ◽  
Inge Marie Svane

Clinical trials of adoptive transfer of autologous tumor infiltrating lymphocytes (TILs) to patients with advanced malignant melanoma have shown remarkable results with objective clinical responses in 50% of the treated patients. In order to initiate a clinical trial in melanoma, we have established a method for expanding TILs to clinical relevant quantities in two steps with in 8 weeks. Further characterization of expanded TILs revealed an oligoclonal composition of T-cells with an effector memory like phenotype. When autologous tumor was available, TILs showed specific activity in all patients tested. TIL cultures contained specificity towards tumor cells as well as peptides derived from tumor-associated antigens (TAAs) during expansion procedures.


Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 917
Author(s):  
Hye Won Lee ◽  
Hyunwoo Lee ◽  
Chanho Park ◽  
Won Joon Oh ◽  
Tae Jin Kim ◽  
...  

Mixed epithelial and stromal tumor of the kidney (MESTK), a benign rare tumor with malignant transformation potential, is thought to be derived from fetal or immature cells originating from the mesonephric and Müllerian ducts. However, due to its rarity, little is known about the anti-tumor immune responses in MESTK. Herein, we present five cases of MESTK and evaluate the population of tumor-infiltrating lymphocytes (TILs) using a freshly obtained MESTK sample. Microscopically, TILs were scattered or clustered in large aggregates in the stroma in all five cases; furthermore, three cases exhibited heavy, large lymphocytic aggregates with no well-organized tertiary lymphoid structures with germinal centers. Flow cytometric analysis of TILs in one freshly obtained MESTK sample revealed that >40% of CD3+ T cells were effector memory Fas+CD28− γδ T cells expressing high levels of programmed cell death protein 1 and inducible T-cell co-stimulator, but low levels of CD44 and CD27. Most αß T cells exhibited a naïve phenotype. Additionally, we detected many activated class-switched CD21+CD27+ B cells as well as CD11chighIgMhigh marginal zone B-like and CD27−CD21−CD23− immunoglobulin (Ig)DhighIgMlow age-associated B-like cells. Collectively, for the first time, we report the immune microenvironment pattern of MESTK to oncogenic stress.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A538-A538
Author(s):  
Sean Judge ◽  
Morgan Darrow ◽  
Steven Thorpe ◽  
Alicia Gingrich ◽  
Edmond O’Donnell ◽  
...  

BackgroundAlthough the presence and activity of tumor infiltrating lymphocytes (TILs) have been shown to be important factors for survival and response to immunotherapy for multiple cancer types, the benefits of immunotherapy in soft tissue sarcomas (STS) have been limited, and novel approaches are needed. In this study, we sought to characterize the phenotype and function of tumor infiltrating natural killer (NK) and T cells in STS patients and to evaluate clinically relevant strategies to augment TIL function.MethodsUsing both prospectively collected blood and tumor tissue from STS patients undergoing surgical resection (n = 21) and archived specimens (n = 45), we performed flow cytometry and immunohistochemistry to evaluate the extent of peripheral and intratumoral CD3-CD56+ NK and CD8+ T cell phenotype and function as predictors of outcome. We also analyzed TCGA data and the peripheral blood of dogs with spontaneous osteosarcoma receiving inhaled IL-15 on a clinical trial to evaluate the association of CD3-NKp46+ NK and CD8+ T cell activation as well as TIGIT upregulation with outcome. Finally, we stimulated patient PBMCs and TILs ex vivo with IL-15 and a novel human anti-TIGIT antibody to assess the impact of combination therapy on NK and T cell phenotype and function. Parametric and non-parametric statistical tests were used where appropriate. Univariate and multivariate survival analyses were performed by Cox proportional hazards models.ResultsCompared to peripheral expression, intratumoral NK and T cells showed an activated and exhausted phenotype by CD69 and TIGIT, respectively. Ex vivo TIL stimulation with IL-15 further increased markers of activation and function including CD69, Ki67, IFNg, and granzyme B, while increasing expression of exhaustion marker TIGIT. Analysis of a retrospective STS cohort and TCGA STS gene expression confirmed the association of TILs with improved prognosis. Dogs with metastatic osteosarcoma receiving inhaled IL-15 exhibited upregulation of activation markers and TIGIT. In vitro, IL-15 and TIGIT blockade of both peripheral and intratumoral NK cells increased cytotoxicity against sarcoma cell lines and increased expression of degranulation marker CD107a compared to IL-15 alone.ConclusionsTILs are associated with improved survival in STS, and tumor infiltrating NK and T cells show features of both increased activation and increased exhaustion. Tumor-infiltrating NK and T cells respond to IL-15 stimulation, but simultaneously further upregulate TIGIT with the combination of IL-15 and TIGIT blockade showing greatest cytotoxic effects. Overall, our data suggest that the combination of IL-15 and TIGIT blockade is a promising clinical strategy in STS.Ethics ApprovalAll experiments involving human and canine patients were approved by the respective Institutional Review Boards at the University of California, Davis, Schools of Medicine (Protocol #218204-9) and Veterinary Medicine (IACUC #20179).


Author(s):  
Cornelis J M Melief

Abstract During the last two decades two main schools of modern immunotherapy have come to the forefront. The chimeric anti-CD20 antibody rituximab that was introduced for the treatment of refractory follicular lymphoma in 1998 was one of the first examples of the school of passive immunotherapy. Subsequently major and ever more costly efforts were spent on the development of blockbuster monotherapies including other monoclonal but also bispecific antibodies of highly defined specificity and subclass, antibody-drug-conjugates (ADCs), as well as ex vivo expanded tumor infiltrating lymphocytes, CAR-transduced T cells, and TCR-transduced T cells. On the other hand there is the school that works towards active induction of patient B- or T-cell immunity against antigens of choice, or active tolerance against pathogenic allergens, auto-antigens or allo-antigens. Stradled in between these two approaches is treatment with blockers of T cell checkpoint control, which releases the brakes of T cells that have already responded to antigen. Extensive and detailed insight into the cellular and molecular interactions that regulate specific immune responses is indispensable in order to be able to optimize efficacy and rule out treatment related toxicity. This applies to all types of immunotherapy. Our knowledge of the checks and balances in the immune system is still increasing at an unprecedented pace, fostering ever more effective and specific (combination) immunotherapies and offering a rich harvest of innovative immunotherapies in the years ahead.


2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi118-vi119
Author(s):  
Alexander Lee ◽  
Yang Pan ◽  
Aaron Mochizuki ◽  
Mildred Galvez ◽  
Frances Chow ◽  
...  

Abstract INTRODUCTION Alternative splicing, the cellular process that converts premature mRNA to mature mRNA and allows for single genes to produce multiple protein products, is frequently dysregulated in many cancers, including glioblastoma. However, along with non-synonymous mutations in the DNA, altered splicing mechanisms in cancers may produce novel antigens (so-called neoantigens) that distinguish cancer cells from healthy cells and can thus be targeted by the immune system. METHODS We developed a new computation pipeline (IRIS – Isoform peptides from RNA splicing for Immunotherapy targets Screening) that took bulk RNA-sequencing data from 23 glioblastoma patient tumor samples and predicted neoantigens that may arise from alternative splicing events. We prioritized predicted neoantigens that arose in HLA*A02:01 and HLA*A03:01 patients and selected 8 potential neoantigens to generate peptide:MHC Class 1 dextramers. We tested PBMCs and/or ex vivo expanded tumor infiltrating lymphocytes (TIL) from 6 of our glioblastoma patients against these dextramers, sorted for any neoantigen-reactive T cells, and performed single-cell RNAsequencing on the sorted population to determine the TCR sequence. RESULTS Among the 8 predicted neoantigens tested, 7 of the neoantigens were recognized by at least 1 patient’s T cells. 1 HLA*A03:01 epitope was recognized in 3 of the 4 HLA*A03:01 patients tested and this epitope was highly positive in an expanded TIL population, representing 1.7% of all CD3+ CD8+ cells. When we sorted for those neoantigen reactive T cells from the expanded TIL population and performed single-cell RNAsequencing, we found 325 unique T cell clonotypes, but the top 10 clonotypes represented 83.6% of all TCR clonotypes. The most frequent TCR clonotype represented 39.1% of the repertoire and suggests that clonal expansion of a select few TCR clones occurred within the tumor. CONCLUSIONS In total, our data indicates that neoantigens arising from alternative splicing events may represent a potential target for immunotherapy in glioblastoma.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A206-A206
Author(s):  
Renata Rossetti ◽  
Leticia Tordesillas ◽  
Matthew Beatty ◽  
Yian Ann Chen ◽  
Dongliang Du ◽  
...  

BackgroundThe immunogenic nature of melanoma has been exploited for the development of adoptive transfer of ex-vivo expanded tumor infiltrating lymphocytes (TIL). This adoptive cell transfer therapy has overall response rates of around 50%. Multiple factors may determine the quality of the TIL product including components of the tumor microenvironment. B-cells are frequently found in melanoma metastasis, and display signs of antigen experience. Recently, B-cell tumor infiltration has been associated with improved clinical responses to immune checkpoint inhibitors,1 2 but their role in TIL therapy remains unexplored. Considering the potential role of B cells, we aim to develop strategies to enhance the quality of TIL products through B-cell stimulation during ex-vivo TIL expansion.MethodsWe stimulated melanoma infiltrating B-cells using human recombinant CD40L on the first day of ex-vivo TIL expansion. Thirteen samples were expanded from melanoma tumor single cell suspensions, in high dose IL-2 alone (standard protocol), or in high dose IL-2 plus CD40L. After up to four weeks of expansion, the TIL phenotype was analyzed by flow cytometry.ResultsThe expansion success rate from the frozen tumor digests was 69% (95% CI: 38.6–90.9%) in the CD40L treatment condition compared to 23% with the standard protocol. Also, TILs cultured in the presence of CD40L expanded to higher numbers than with the standard protocol (P = 0.02). Interestingly, most of the samples expanded with CD40L had a significant increase in the percentage of CD4+ T cells (P = 0.03), but not to the detriment of the absolute number of CD8+ T cells. Treatment with CD40L increased the percentage of effector memory-like T cells (P = 0.03) and of CD39- CD69- T cells (P < 0.05), which were recently associated with response to TIL therapy.3ConclusionsThis preliminary work demonstrates that the stimulation with CD40L at the initiation of TIL culture leads to enhanced TIL expansion and an increase in CD4+ T cells with an effector memory-like and stem-like phenotype. Our group and others have previously described cases of patients who had tumor regression after receiving TIL therapy that were predominantly CD4+ T cells, suggesting that expansion of the CD4+ TIL repertoire may enhance TIL therapy.4AcknowledgementsThis work has been supported in part by the Flow Cytometry, Genomics and Biostatistics and Bioinformatics Core Facilities at Moffitt Cancer Center, an NCI designated Comprehensive Cancer Center (P30-CA076292). We acknowledge Moffitt’s Melanoma Center of Excellence for the financial support.ReferencesCabrita R, Lauss M, Sanna A. Tertiary lymphoid structures improve immunotherapy and survival in melanoma. Nature 2020;577:561–565.Petitprez F, de Reynies A, Keung EZ. B cells are associated with survival and immunotherapy response in sarcoma. Nature 2020;577:556–560.Krishna S, Lowery FJ, Copeland AR. Stem-like CD8 T cells mediate response of adoptive cell immunotherapy against human cancer. Science 2020;370:1328–1334.Friedman KM, Prieto PA, Devillier LE. Tumor-specific CD4+ melanoma tumor-infiltrating lymphocytes. J Immunother 2012;35:400–408.Ethics ApprovalThe study was approved by Advarra IRB, approval number MCC20559.


2021 ◽  
Author(s):  
HM Knochelmann ◽  
AM Rivera-Reyes ◽  
MM Wyatt ◽  
AS Smith ◽  
R Chamness ◽  
...  

AbstractAdoptive transfer of tumor-infiltrating lymphocytes (TIL) elicits the regression of metastatic malignancies, yet a low proportion of patients achieve complete durable responses. The high incidence of relapse in these patients highlights the need to better understand mechanisms of tumor escape from T cell control. While melanoma has provided the foundation for developing TIL therapy, much less is known about TIL efficacy and relapse in other malignancies. We sought to investigate TIL characteristics in mouse tumors which have not been studied in this setting. Here, we expanded murine TIL ex vivo in IL-2 from fragments of multiple tumor models, including oral cavity cancer models of varying immunogenicity. Additionally, TIL was expanded from pmel-1 mice bearing B16 melanoma, yielding an enriched population of tumor-infiltrating TCR transgenic T cells. Murine TILs are similar to human TIL in that they express high levels of inhibitory receptors (PD-1, Tim-3, etc.) and can be expanded ex vivo in IL-2 extensively. Of clinical relevance, we draw parallels between murine and patient TIL, evaluating relationships between PD-1, Lag-3, and Tim-3 on TILs from a cohort of oral cavity cancer patients. This platform can be used by labs even in the absence of clinical specimens or clean cell facilities and will be important to more broadly understand TIL phenotypes across many different malignancies.


Author(s):  
Yannick Simoni ◽  
Shamin Li ◽  
Summer Zhuang ◽  
Antja Heit ◽  
Si-Lin Koo ◽  
...  

AbstractTumor-specific T cells likely underpin effective immune checkpoint-blockade therapies. Yet, most studies focus on Treg cells and CD8+ tumor-infiltrating lymphocytes (TILs). Here we study CD4+ TILs in human lung and colorectal cancers and observe that non-Treg CD4+ TILs average more than 70% of total CD4+ TILs in both cancer types. Leveraging high dimensional analyses including mass cytometry and single-cell sequencing, we reveal that CD4+ TILs are heterogeneous at both gene and protein levels, within each tumor and across patients. Consistently, we find different subsets of CD4+ TILs showing characteristics of effectors, tissue resident memory (Trm) or exhausted cells (expressing PD-1, CTLA-4 and CD39). In both cancer types, the frequencies of CD39− non-Treg CD4+ TILs strongly correlate with frequencies of CD39− CD8+ TILs, which we and others have previously shown to be enriched for cells specific for cancer-unrelated antigens (bystanders). Ex-vivo, we demonstrate that CD39− CD4+ TILs can be specific for cancer unrelated antigens, such as HCMV epitopes. Overall, our findings highlight that CD4+ TILs cells are not necessarily tumor-specific and suggest measuring CD39 expression as a straightforward way to quantify or isolate bystander CD4+ T cells.Graphical abstract


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A822-A822
Author(s):  
Sri Krishna ◽  
Frank Lowery ◽  
Amy Copeland ◽  
Stephanie Goff ◽  
Grégoire Altan-Bonnet ◽  
...  

BackgroundAdoptive T cell therapy (ACT) utilizing ex vivo-expanded autologous tumor infiltrating lymphocytes (TILs) can result in complete regression of human cancers.1 Successful immunotherapy is influenced by several tumor-intrinsic factors.2 3 Recently, T cell-intrinsic factors have been associated with immunotherapy response in murine and human studies.4 5 Analyses of tumor-reactive TILs have concluded that anti-tumor neoantigen-specific TILs are enriched in subsets defined by the expression of PD-1 or CD39.6 7 Thus, there is a lack of consensus regarding the tumor-reactive TIL subset that is directly responsible for successful immunotherapies such as ICB and ACT. In this study, we attempted to define the fitness landscape of TIL-enriched infusion products to specifically understand its phenotypic impact on human immunotherapy responses.MethodsWe compared the phenotypic differences that could distinguish bulk ACT infusion products (I.P.) administered to patients who had complete response to therapy (complete responders, CRs, N = 24) from those whose disease progressed following ACT (non-responders, NRs, N = 30) by high dimensional single cell protein and RNA analysis of the I.P. We further analyzed the phenotypic states of anti-tumor neoantigen specific TILs from patient I.P (N = 26) by flow cytometry and single cell transcriptomics.ResultsWe identified two CD8+ TIL populations associated with clinical outcomes: a memory-progenitor CD39-negative stem-like TIL (CD39-CD69-) in the I.P. associated with complete cancer regression (overall survival, P < 0.0001, HR = 0.217, 95% CI 0.101 to 0.463) and TIL persistence, and a terminally differentiated CD39-positive TIL (CD39+CD69+) population associated with poor TIL persistence post-treatment. Although the majority (>65%) of neoantigen-reactive TILs in both responders and non-responders to ACT were found in the differentiated CD39+ state, CR infusion products also contained a pool of CD39- stem-like neoantigen-specific TILs (median = 8.8%) that was lacking in NR infusion products (median = 23.6%, P = 1.86 x 10-5). Tumor-reactive stem-like T cells were capable of self-renewal, expansion, and persistence, and mediated superior anti-tumor response in vivo.ConclusionsOur results support the hypothesis that responders to ACT received infusion products containing a pool of stem-like neoantigen-specific TILs that are able to undergo prolific expansion, give rise to differentiated subsets, and mediate long-term tumor control and T cell persistence, in line with recent murine ICB studies mediated by TCF+ progenitor T cells.4 5 Our data also suggest that TIL subsets mediating ACT-response (stem-like CD39-) might be distinct from TIL subsets enriched for anti-tumor-reactivity (terminally differentiated CD39+) in human TIL.6 7AcknowledgementsWe thank Don White for curating the melanoma patient cohort, and J. Panopoulos (Flowjo) for helpful discussions on high-dimensional analysis, and NCI Surgery Branch members for helpful insights and suggestions. S. Krishna acknowledges funding support from NCI Director’s Innovation Award from the National Cancer Institute.Trial RegistrationNAEthics ApprovalThe study was approved by NCI’s IRB ethics board.ReferencesGoff SL, et al. Randomized, prospective evaluation comparing intensity of lymphodepletion before adoptive transfer of tumor-infiltrating lymphocytes for patients with metastatic melanoma. J Clin Oncol 2016;34:2389–2397.Snyder A, et al. Genetic basis for clinical response to CTLA-4 blockade in melanoma. N Engl J Med 2014;371:2189–2199.McGranahan N, et al. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science 2016;351:1463–1469.Sade-Feldman M, et al. Defining T cell states associated with response to checkpoint immunotherapy in melanoma. Cell 2019;176:404.Miller BC, et al. Subsets of exhausted CD8 T cells differentially mediate tumor control and respond to checkpoint blockade. Nat. Immunol 2019;20:326–336.Simoni Y, et al. Bystander CD8 T cells are abundant and phenotypically distinct in human tumour infiltrates. Nature 2018;557:575–579.Gros A, et al. PD-1 identifies the patient-specific CD8+ tumor-reactive repertoire infiltrating human tumors. J Clin Invest 2014;124:2246–2259.


Sign in / Sign up

Export Citation Format

Share Document