Highly sensitive detection of rare mutant alleles by combining argonaute-based enrichment and XNA-PCR.

2019 ◽  
Vol 37 (15_suppl) ◽  
pp. e14605-e14605
Author(s):  
Jinzhao Song ◽  
Michael Joseph Powell ◽  
Wei Liu ◽  
Junman Chen ◽  
Haim Bau

e14605 Background: Characterization of disease-associated, cell-free nucleic acids (liquid biopsy) provides a powerful, minimally-invasive means for early disease detection, genotyping, and personalized therapy. Detection of alleles of clinical interest is often challenged by their low concentration and sequence homology with the much more abundant wildtype nucleic acids. Methods: Argonuate (Ago) from the thermophilic bacterium Thermus thermophilus ( TtAgo) utilizes short DNA guides to specifically cleave complementary DNA and RNA targets. We found that under optimized conditions, TtAgo cleaves DNA and RNA complementary to the guide DNA with high efficiency, but spares nucleic acids with a single nucleotide mismatch at and around its catalytic site with high sensitivity. Based on these findings, we designed a new multiplexed enrichment assay, dubbed NAVIGATER (Nucleic Acid enrichment Via DNA Guided Argonaute from Thermus thermophilus), that utilizes TtAgo, to specifically cleave perfectly complementary DNA and RNA while sparing alleles of interest. Results: NAVIGATER greatly increases the fractions of rare mutant alleles with single nucleotide precision enhancing the sensitivity of downstream detection methods such as XNA-PCR. We demonstrate 60-fold enrichment of KRAS G12D in blood samples from pancreatic cancer patients and over ten-fold improved sensitivity of XNA-PCR, enabling multiplex detection of KRAS and EGFR mutants at 0.01% fractions. Conclusions: NAVIGATER has important advantages over other mutant allele enrichment assays such as the ones based on CRISPR-Cas. It does not require the target to contain a protospacer-adjacent motif; is a true (turnover) catalyst; can cleave both DNA and associated exosomal RNA targets, improving sensitivity; and can operate at elevated temperatures for higher selectivity and compatibility with detection schemes.

2019 ◽  
Vol 48 (4) ◽  
pp. e19-e19 ◽  
Author(s):  
Jinzhao Song ◽  
Jorrit W Hegge ◽  
Michael G Mauk ◽  
Junman Chen ◽  
Jacob E Till ◽  
...  

Abstract Detection of disease-associated, cell-free nucleic acids in body fluids enables early diagnostics, genotyping and personalized therapy, but is challenged by the low concentrations of clinically significant nucleic acids and their sequence homology with abundant wild-type nucleic acids. We describe a novel approach, dubbed NAVIGATER, for increasing the fractions of Nucleic Acids of clinical interest Via DNA-Guided Argonaute from Thermus thermophilus (TtAgo). TtAgo cleaves specifically guide-complementary DNA and RNA with single nucleotide precision, greatly increasing the fractions of rare alleles and, enhancing the sensitivity of downstream detection methods such as ddPCR, sequencing, and clamped enzymatic amplification. We demonstrated 60-fold enrichment of the cancer biomarker KRAS G12D and ∼100-fold increased sensitivity of Peptide Nucleic Acid (PNA) and Xenonucleic Acid (XNA) clamp PCR, enabling detection of low-frequency (<0.01%) mutant alleles (∼1 copy) in blood samples of pancreatic cancer patients. NAVIGATER surpasses Cas9-based assays (e.g. DASH, Depletion of Abundant Sequences by Hybridization), identifying more mutation-positive samples when combined with XNA-PCR. Moreover, TtAgo does not require targets to contain any specific protospacer-adjacent motifs (PAM); is a multi-turnover enzyme; cleaves ssDNA, dsDNA and RNA targets in a single assay; and operates at elevated temperatures, providing high selectivity and compatibility with polymerases.


2018 ◽  
Author(s):  
Jinzhao Song ◽  
Jorrit W. Hegge ◽  
Michael G. Mauk ◽  
Neha Bhagwat ◽  
Jacob E. Till ◽  
...  

ABSTRACTCharacterization of disease-associated, cell-free nucleic acids (liquid biopsy) provides a powerful, minimally-invasive means for early detection, genotyping, and personalized therapy; but is challenged by alleles of interest differing by single nucleotide from and residing among large abundance of wild-type alleles. We describe a new multiplexed enrichment assay, dubbed NAVIGATER, that utilizes short nucleic acid-guided endonucleases Argonaute (Ago), derived from the bacterium Thermus thermophilus (TtAgo), to specifically cleave complementary DNA and RNA while sparing alleles having single nucleotide mismatches with the guides. NAVIGATER greatly increases the fractions of rare alleles of interest in samples and enhances sensitivity of downstream procedures such ddPCR, sequencing, and clamped enzymatic amplification. We demonstrate 60-fold enrichment of KRAS G12D in blood samples from pancreatic cancer patients and detection of KRAS, EGFR, and BRAF mutants with XNA-PCR at 0.01% fraction.


2017 ◽  
Vol 46 (10) ◽  
pp. 2844-2872 ◽  
Author(s):  
Yuqi Chen ◽  
Tingting Hong ◽  
Shaoru Wang ◽  
Jing Mo ◽  
Tian Tian ◽  
...  

This review focuses on the recent progresses in epigenetic modifications in DNA and RNA, including their epigenetic roles, detection methods and applications in clinical medicine.


ChemBioChem ◽  
2007 ◽  
Vol 8 (10) ◽  
pp. 1122-1125 ◽  
Author(s):  
T. Santhosh Kumar ◽  
Jesper Wengel ◽  
Patrick J. Hrdlicka

2011 ◽  
Vol 76 (11) ◽  
pp. 1347-1360 ◽  
Author(s):  
Irina V. Astakhova ◽  
T. Santhosh Kumar ◽  
Jesper Wengel

Herein, a novel fluorescent nucleotide analogue, perylene-2′-amino-α-L-LNA, has been prepared and studied within synthetic oligonucleotides of different sequences. The phosphoramidite reagent was synthesized in 85% overall yield starting from 2′-amino-α-L-LNA nucleoside. Incorporation efficiency of the resulting perylene-2′-amino-α-L-LNA monomer (T*) into synthetic oligonucleotides was significantly improved by replacement of the typically used 1H-tetrazole activator with pyridine hydrochloride. Generally, oligonucleotides containing monomerT* showed high binding affinity towards complementary DNA and RNA targets, batochromically shifted excitation/emission wavelengths with respect to the often applied polyaromatic hydrocarbon pyrene, high fluorescent quantum yields and very low target detection limits (5–10 nM). Fluorescence of single stranded LNA/DNA mixmer oligonucleotide having two incorporations of monomersT* was quenched (quantum yield ΦF= 0.21) relative to duplexes of this probe with complementary DNA and RNA (ΦF= 0.42 and 0.35, respectively). On the contrary, a strong fluorescence quenching upon target binding was demonstrated by two short oligonucleotides of analogues sequences containing monomersT* at 5′- and 3′-terminal positions. We explain the hybridization-induced light-up effect observed for double-labeled probe by a reduction of fluorescence quenching due to precise positioning of the fluorophores within the double-stranded complexes. Furthermore, we propose that a covalent link between twoT* monomers in the double-labeled probe provides a remarkable degree of rigidity in the double helix which enforces positioning of the bulky perylene moieties in the nonpolar groove resulting in reduced fluorescence quenching.


Sign in / Sign up

Export Citation Format

Share Document