Role of Microsomal Monooxygenases in Phytochemical/Insect Interactions

Author(s):  
S Yu
2019 ◽  
Author(s):  
Irene A Vos ◽  
Adriaan Verhage ◽  
Lewis G Watt ◽  
Ido Vlaardingerbroek ◽  
Robert C Schuurink ◽  
...  

AbstractJasmonic acid (JA) is an important plant hormone in the regulation of defenses against chewing herbivores and necrotrophic pathogens. In Arabidopsis thaliana, the JA response pathway consists of two antagonistic branches that are regulated by MYC- and ERF-type transcription factors, respectively. The role of abscisic acid (ABA) and ethylene (ET) in the molecular regulation of the MYC/ERF antagonism during plant-insect interactions is still unclear. Here, we show that production of ABA induced in response to leaf-chewing Pieris rapae caterpillars is required for both the activation of the MYC-branch and the suppression of the ERF-branch during herbivory. Exogenous application of ABA suppressed ectopic ERF-mediated PDF1.2 expression in 35S::ORA59 plants. Moreover, the GCC-box promoter motif, which is required for JA/ET-induced activation of the ERF-branch genes ORA59 and PDF1.2, was targeted by ABA. Application of gaseous ET counteracted activation of the MYC-branch and repression of the ERF-branch by P. rapae, but infection with the ET-inducing necrotrophic pathogen Botrytis cinerea did not. Accordingly, P. rapae performed equally well on B. cinerea-infected and control plants, whereas activation of the MYC-branch resulted in reduced caterpillar performance. Together, these data indicate that upon feeding by P. rapae, ABA is essential for activating the MYC-branch and suppressing the ERF-branch of the JA pathway, which maximizes defense against caterpillars.


2017 ◽  
Vol 23 ◽  
pp. 70-80 ◽  
Author(s):  
Mary A Jamieson ◽  
Laura A Burkle ◽  
Jessamyn S Manson ◽  
Justin B Runyon ◽  
Amy M Trowbridge ◽  
...  

Insects ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 921
Author(s):  
André-Philippe Drapeau Drapeau Picard ◽  
Marjolaine Giroux ◽  
Michel Saint-Germain ◽  
Maxim Larrivée

In general, insects and arthropods polarizing: they either fascinate people, disgust people, or both, and they generate lots of questions. Museums are perceived as reliable sources of information and, as such, a go-to destination for the public to receive answers. Since its opening in 1990, the Montreal Insectarium has offered an entomological information service, allowing the public to send questions, photographs, and specimens for identification. All requests are answered by entomologists. Spatiotemporal variations in taxonomic, geographic, and thematic profiles of the 4163 requests received in 2010–2011 and 2017–2018 were analyzed. Requests came from 35 countries, and most of those requests came from Canada. The majority of requests were identification requests. Representing 25% of identification requests, the five most frequent species were the eastern dobsonfly Corydalus cornutus, the masked hunter Reduvius personatus, the giant water bug Lethocerus americanus, the western conifer-seed bug Leptoglossus occidentalis, and the Japanese beetle Popillia japonica. A comparison with the data from the citizen science platform iNaturalist shows that the EIS can be a valuable tool for invasive species detection. Frequent subjects included school projects, entomophagy (eating insects), and wasp and bee nests. Finally, we discuss the role of entomologists in providing scientific information but also in addressing common concerns regarding cohabitation with arthropods.


HortScience ◽  
1996 ◽  
Vol 31 (6) ◽  
pp. 917-918
Author(s):  
U.K. Schuch ◽  
J.A. Bethke ◽  
R.A. Redak

Water stress and N fertilization can have a profound effect on populations of phytophagous insects. While species and cultivar selection can identify plants that are resistant to common insect pests, cultural practices may further decrease the susceptibility to insect attacks. Six poinsettia and six chrysanthemum cultivars were grown under well-watered or water-deficient conditions, and three fertilizer regimes with low, medium, or high concentrations of N. Vegetative plant growth and longevity and fecundity of various insect pests on these plants were determined. Host plant suitability to insects was estimated by the quantity of foliar soluble protein. Low irrigation reduced leaf area and leaf and stem dry weights 36% to 41% in poinsettias and 26% to 28% in chrysanthemum. Leaf area and leaf dry weight increased linearly in response to increasing fertilizer concentrations in poinsettia and chrysanthemum. Cultivar-specific differences were found for all variables of vegetative growth in poinsettiasand chrysanthemum. Cultivar also strongly affected insect preference, development, and fecundity. Low irrigation significantly reduced insect survivorship of the silverleaf whitefly on poinsettias. On chrysanthemum, leafminers, thrips, and melon aphids were unaffected by irrigation or fertilizer treatments. Chrysanthemum cultivar choice strongly affected the number of insects or development time.


2021 ◽  
Vol 22 (3) ◽  
pp. 1442
Author(s):  
Sukhman Singh ◽  
Ishveen Kaur ◽  
Rupesh Kariyat

There is no argument to the fact that insect herbivores cause significant losses to plant productivity in both natural and agricultural ecosystems. To counter this continuous onslaught, plants have evolved a suite of direct and indirect, constitutive and induced, chemical and physical defenses, and secondary metabolites are a key group that facilitates these defenses. Polyphenols—widely distributed in flowering plants—are the major group of such biologically active secondary metabolites. Recent advances in analytical chemistry and metabolomics have provided an opportunity to dig deep into extraction and quantification of plant-based natural products with insecticidal/insect deterrent activity, a potential sustainable pest management strategy. However, we currently lack an updated review of their multifunctional roles in insect-plant interactions, especially focusing on their insect deterrent or antifeedant properties. This review focuses on the role of polyphenols in plant-insect interactions and plant defenses including their structure, induction, regulation, and their anti-feeding and toxicity effects. Details on mechanisms underlying these interactions and localization of these compounds are discussed in the context of insect-plant interactions, current findings, and potential avenues for future research in this area.


Sign in / Sign up

Export Citation Format

Share Document