Performance-Based Earthquake Engineering

Author(s):  
Helmut Krawinkler ◽  
Eduardo Miranda
2017 ◽  
Vol 20 (11) ◽  
pp. 1744-1756 ◽  
Author(s):  
Peng Deng ◽  
Shiling Pei ◽  
John W. van de Lindt ◽  
Hongyan Liu ◽  
Chao Zhang

Inclusion of ground motion–induced uncertainty in structural response evaluation is an essential component for performance-based earthquake engineering. In current practice, ground motion uncertainty is often represented in performance-based earthquake engineering analysis empirically through the use of one or more ground motion suites. How to quantitatively characterize ground motion–induced structural response uncertainty propagation at different seismic hazard levels has not been thoroughly studied to date. In this study, a procedure to quantify the influence of ground motion uncertainty on elastoplastic single-degree-of-freedom acceleration responses in an incremental dynamic analysis is proposed. By modeling the shape of the incremental dynamic analysis curves, the formula to calculate uncertainty in maximum acceleration responses of linear systems and elastoplastic single-degree-of-freedom systems is constructed. This closed-form calculation provided a quantitative way to establish statistical equivalency for different ground motion suites with regard to acceleration response in these simple systems. This equivalence was validated through a numerical experiment, in which an equivalent ground motion suite for an existing ground motion suite was constructed and shown to yield statistically similar acceleration responses to that of the existing ground motion suite at all intensity levels.


2009 ◽  
Vol 25 (2) ◽  
pp. 277-300 ◽  
Author(s):  
Chad W. Harden ◽  
Tara C. Hutchinson

The nonlinear behavior of shallow foundations under large amplitude earthquake-induced loading can result in dissipation of seismic energy through the mechanism of soil yielding beneath the foundation. In addition, foundation uplifting may shift the period of the soil-foundation-structure system away from the damaging energy content of most earthquakes. However, this yielding and uplifting may lead to excessive transient and permanent deformations (settlement, rocking, and sliding). Therefore, modeling procedures that account for foundation nonlinearity and uplift are needed before these benefits can be realized in performance based earthquake engineering (PBEE) practice. This paper adopts a beam-on-nonlinear-Winkler-foundation (BNWF) simulation methodology for modeling shallow foundation-structure systems, where seismically-induced rocking plays a predominant role in their response. Numerical results demonstrate that reasonable comparison between the nonlinear Winkler-based approach, and experimental response in terms of moment-rotation, settlement-rotation, and shear-sliding displacement can be obtained, given an appropriate selection of model and soil properties.


Sign in / Sign up

Export Citation Format

Share Document