Fundamentals of Bubble Nucleation and Growth in Polymers

Author(s):  
N Ramesh
Lithos ◽  
2018 ◽  
Vol 296-299 ◽  
pp. 532-546 ◽  
Author(s):  
P. Pleše ◽  
M.D. Higgins ◽  
L. Mancini ◽  
G. Lanzafame ◽  
F. Brun ◽  
...  

1992 ◽  
Vol 270 ◽  
Author(s):  
S. S. Sandhu ◽  
J. W. Hager

ABSTRACTMathematical equations have been formulated to guide an experimental effort to produce an open-celled mesophase pitch foam. The formulation provides an analytical description of homogeneous bubble nucleation and growth, diffusion of the blowing gas through the liquid to the bubble surface, and the average material thickness between bubbles. Implications of the formulation for the experimental production of mesophase pitch foam are discussed.


2019 ◽  
Vol 123 (38) ◽  
pp. 23586-23593 ◽  
Author(s):  
Xiaolai Li ◽  
Yuliang Wang ◽  
Mikhail E. Zaytsev ◽  
Guillaume Lajoinie ◽  
Hai Le The ◽  
...  

Volume 3 ◽  
2004 ◽  
Author(s):  
Shin-Ichi Tsuda ◽  
Shu Takagi ◽  
Yoichiro Matsumoto

Bubble nucleation and growth of formed nuclei are investigated by molecular dynamics simulation in Lennard-Jones liquid with gas impurities. For the onset of nucleation from bulk, it has been found that a dissolved gas whose interaction is very weak and whose diameter is larger than that of solvent molecules makes the action to cause composition fluctuation or local phase separation so strong that the nucleation probability predicted from pressure change becomes qualitatively wrong. It has been confirmed that this wrong prediction is generally explained by introducing the superheat ratio nondimensionalized by saturation pressure and spinodal pressure. For the growth stage of formed bubble nuclei, it is observed that the coalescence of nuclei occurs when a weak-interaction gas is dissolved at a high concentration while the competition between neighbor nuclei is dominant in the case of pure liquid.


2006 ◽  
Vol 128 (8) ◽  
pp. 734-734 ◽  
Author(s):  
C. Thomas Avedisian ◽  
Richard E. Cavicchi ◽  
Michael J. Tarlov

These images show bubble nucleation and growth of a thin film heater (a platinum film 15 μm wide, 30 μm long and 0.2 μm thick) that is heated by an 11.8 volt pulse of 0.50 μs duration in subcooled water. Imaging is by illumination from a Nd:Yag laser (hence the green colored photographs) that produces an effective frame rate of 1.3×108 frames/s (the method is described in Avedisian et al. (2006) and Balss et al. (2005)). Time is relative to the first appearance of bubbles. In the early phase, bubbles are visible at the four corners of the platinum surface (58 ns) which grow laterally into a vapor film (142 ns) that covers the surface by 178 ns after which the bubble thickens and grows into the bulk (246 ns and beyond). The collapse phase (e.g., 3.5 μs to 3.8 μs) continues well after the heater pulse is turned off. Vapor completely disappears (3.65 μs) but then bubbles reappear (3.8 μs) well after the power-off phase. Reappearance of bubbles is speculated to be the result of a stagnation-like flow induced by the rapid collapse and inward motion of liquid that jets upward to cause a local reduction of pressure to cavitate a bubble at 3.8 μs. [Avedisian, C.T., Cavicchi, R.E., Tarlov, M.J., Rev. Sci. Instruments, 2006, in press; Balss, K.M., Avedisian, C.T., Cavicchi, R.E., Tarlov, M.J., Langmuir, 21, 10459–10467 (2005)]


2012 ◽  
Vol 426 (1-3) ◽  
pp. 287-297 ◽  
Author(s):  
Christian Dethloff ◽  
Ermile Gaganidze ◽  
Vyacheslav V. Svetukhin ◽  
Jarir Aktaa

1983 ◽  
Vol 105 (2) ◽  
pp. 119-125 ◽  
Author(s):  
D. C. Bugby ◽  
A. F. Mills ◽  
A. T. Wassel

Bubble nucleation and growth in the evaporator, condenser, upcomers, and feedwater distribution systems of open-cycle ocean thermal energy conversion (OTEC) power plants are examined. The phenomenon that will probably have the most impact on system design is cavitation in the warm water feed near the entrance of the evaporator. The critical bubble size for cavitation is about 105 μm. Sources of bubbles in the warm water feed are those entering from the ocean, those nucleating on suspended particles, and those nucleating on the upcomer wall. Analyses of bubble growth induced by changes in hydrostatic pressure, mass transfer, and coalescence are presented. Using available information for bubble size distribution in seawater at California locations, it is shown that cavitation will probably have a significant impact on evaporator performance unless a debubbler is provided upstream of the evaporator entrance.


2015 ◽  
Vol 773-774 ◽  
pp. 304-308 ◽  
Author(s):  
Zhen Hong Ban ◽  
Kok Keong Lau ◽  
Mohd Sharif Azmi

Computational modelling of dissolved gas bubble formation and growth in supersaturated solution is essential for various engineering applications, including flash vaporisation of petroleum crude oil. The common mathematical modelling of bubbly flow only caters for single liquid and its vapour, which is known as cavitation. This work aims to simulate the bubble nucleation and growth of dissolved CO2 in water across a cavitating nozzle. The dynamics of bubble nucleation and growth phenomenon will be predicted based on the hydrodynamics in the computational domain. The complex interrelated bubble dynamics, mass transfer and hydrodynamics was coupled by using Computational Fluid Dynamics (CFD) and bubble nucleation and growth model. Generally, the bubbles nucleate at the throat of the nozzle and grow along with the flow. Therefore, only the region after the throat of the nozzle has bubbles. This approach is expected to be useful for various types of bubbly flow modelling in supersaturated condition.


Polymers ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 648 ◽  
Author(s):  
Jie Chu ◽  
Xiaofei Xu

In this paper, we study bubble nucleation and growth in a poly(methyl methacrylate) and CO 2 mixture by molecular dynamics simulations. It is known in the foaming industry that the bubble size has a more uniform distribution with a higher start-up pressure. The real physical reason remains unclear. In this work, we found that the free volume-rich polymer segments could adsorb many small-size bubbles in the region close to the polymer chain. The existence of these small bubbles limits the number of free CO 2 molecules, which is helpful for bubble stabilization. Moreover, the free volume of polymer segments decreases with an increase of the start-up pressure. As a result, the size of the large bubbles becomes more uniform with a higher startup pressure.


Sign in / Sign up

Export Citation Format

Share Document